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Abstract 

Fixed-point C language i s  proposed f o r  convenient 
and eJgicient programming of fixed-point digital signal 
processors. T h i s  language has  a y x ’  data type tha t  can 
have a n  individual integer word-length according t o  the  
range of a variable. It can add or subtract t w o  data 
having different integer word-lengths by automatically 
inserting shif t  operations. T h e  accuracy of fixed-point 
multiply operation i s  significantly increased by storing 
the  upper part of the  multiplied double-precision re- 
sult instead of keeping the  lower  part as conducted in 
the  integer multiplication. T h e  quantization noise re- 
sulting from fixed-point ar i thmet ic  i s  significantly re- 
duced when  compared wi th  conventional integer pro- 
grams. T h e  execution speed i s  much ,  nearly 20 t imes ,  
f a s t e r  t h a n  a floating-point C program in fixed-point 
digital signal processors. 

1 Introduction 

Although C language is not very ideal for describing 
digital signal processing algorithms] it is widely used 
for simulation and algorithm verification. Especially, 
C compilers for floating-point digital signal processors 
are gaining acceptance because of the shortened de- 
velopment time and the improved compiler efficiency. 
However, C compilers for fixed-point digital signal pro- 
cessors have met with little acceptance [l] especially 
because of the overhead in executing floating-point op- 
erations using fixed-point data path. 

One may use the ‘ i n t ’  data type in C language 
not to  use floating-point operations, but it results in 
a severe loss of accuracy, especially for performing 
multiply operations even after careful scaling of the 
program. In the integer multiplication of two 16 bit 
operands] the lower 16 bit part is stored as the result 
among 31 bit of the product as illustrated in Fig. 1. 
Thus, we have to  severely scale down the input of the 
multiplier in order to prevent overflows. Obviously, it 
is also tedious to  develop integer programs. 

In this paper, we introduce. a new, data type,‘f ix,’ 
and define corresponding arithmetic operations to 
solve these problems. A fixed-point C compiler for 
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Figure 1: Integer multiplication 

TMS320C50, Texas Instruments’ fixed-point digital 
signal processor, is prototyped by modifying a retar- 
getable C compiler [a]. The execution speed and the 
SQNR of the floating-point] the integer, and the fixed- 
point implementations are compared by using a bi- 
quad IIR digital filter program. 

2 Fixed-point data representation and 
arithmetic rules 

An integer variable or constant in C language con- 
sists of, usually, 16 bits, and the LSB(Least Significant 
Bit) has the weight of one for the conversion to  or from 
the floating-point data type. This can bring overflows 
or unacceptable quantization errors when a floating- 
point digital signal processing program is converted to  
an integer version. Therefore, it is necessary to  assign 
a different weight to the LSB of a variable or a con- 
stant [3] [4]. In order to assign a different weight, we 
employed the fixed-point data type that can have an 
individual integer word-length as follows: 

fix(integer-wordlength) variable-name; 

Figure 2 shows a 16 bit fixed-point data format 
with the integer word-length of Wl and the fractional 
word-length of WF. Note that the range (R) that a 
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Figure 2: A 16 bit two’s complement fixed-point data 
format with the Wr of 2 

variable can represent and the quantization step (Qs) 
are dependent on the integer word-length as follows. 

-2wK 5 R < 2 w ~  (1) 
(2) Qs = 2-WF = 2-(15-Wr) 

For example, with a variable of ‘f ix(2) x’ that has 
the integer word-length of 2, the fixed-point signal x 
can represent a data between -4 and 4 with the quan- 
tization step of 2-13. Note that we can derive the 
unsigned, long, and shor t  formats based on the same 
idea. 

The arithmetic rules employing this fixed-point 
data representation and a hardware data-path hav- 
ing a 16 bit by 16 bit two’s complement multiplier, 
a 32 bit ALU, and a barrel shifter can be derived as 
follows. 

2.1 Addition or subtraction 

Two data can be added or subtracted after equal- 
izing the integer word-length for them. The integer 
word-length can be changed by arithmetic shift op- 
erations. An arithmetic right shift of 1 increases the 
integer word-length by 1. For example, the program 
shown in Fig. 3-(a) can be compiled as depicted in 
Fig. 3-(b). Figure 3-(c) also shows the compiled as- 
sembly codes for the TMS320C50 fixed-point digital 
signal processor. 

y = x + y ;  

LACC -x, 15 
ADD -y ,  16 
SACH - y ,  0 

(c) 

Figure 3: ‘fix data type add-operation 

Note that SFR(1) represents an one-bit arithmetic 
right shift. 

2.2 Multiplication 

Two’s complement multiplication of two 16 bit 
data, x and y, yields a 31 bit result in the P regis- 
ter, P(30:0), as shown in Fig. 1. Note that an extra 
sign bit is eliminated in the two’s complement multi- 
plication process. In the fixed-point C, the upper 16 
bit part, P(30: 151, is stored as the product as illus- 
trated in Fig. 4. For example, the program shown in 
Fig. 5-(a) can be compiled as depicted in Fig. 5-(b). 
Figure 5-(c) also shows the compiled codes for the 
TMS320C50 using the fixed-point C compiler. 

x( l5:O)  

I 

Figure 4: Fixed-point multiplication 

y = x * y ;  

(a) 
P-reg(31 :O) = HUL ( x ,  y )  ; 
y = SFL(2)P_reg(30:15); 

(b) 

LT -x 
WPY -y 
SPH 1 ; shift left 

; by one b i t  
PAC 
SACH - y ,  2 

(c) 

oduct 

Figure 5: ‘fix’ data type multiply-operation 

Note that SACH(store high accumulator) instruc- 
tion for storing the upper part of the product is used 
instead of the usual SACL(store low accumulator) in- 
struction. Here, SFL(2) represents a two-bit arith- 
metic left-shift. 

3 Determination of the number of 
shifts 

The TMS320C50 has three barrel shifters at the 
data-path as shown in Fig. 6. Each of them will 
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Figure 6: Simplified data path of the TMS320C50 

be denoted as s h i f t e r  a, s h i f t e r  m, and s h i f t e r  
0. The s h i f t e r  a is for scaling the direct input to 
the accumulator, and used in the instructions such 
as ADD(add), SUB(subtract), and LACC(1oad). The 
s h i f t e r  m is for scaling the multiplier output, and af- 
fects the result of the instructions such as PAC(1oad 
with product) and APAC(accumu1ate with product). 
The s h i f t e r  o scales the accumulator output when 
the data is moved into memory location by the SACL 
or SACH instructions. Each shifter is significantly dif- 
ferent from each other in its shifting capability. 

We know the integer wordlength of all the input 
and output operands to the data path, but do not 
have any information to the range of the accumulator 
which can only be obtained at the simulation time. 

3.1 Determination of the number of shifts 
for s h i f t e r  m 

The number of shifts for s h i f t e r  m should be de- 
termined first because it does not support continuous 
scaling. The number of shifts of -6 is used when the 
integer wordlength of the accumulator is larger than 
that of the multiplied results, such as the case of loop 
operation. The number of shifts of 1 is employed for 
eliminating the superfluous sign bit in two’s comple- 
mentary multiplication. Note that selecting the num- 
ber of shifts of -6 can prevent the overflows in the accu- 
mulator, but increases the quantization noise. Since 
we do not know the integer wordlength of the accu- 
mulator at the compile time, we initially assume the 
number of shifts of -6 for the s h i f t e r  m, which means 
a very conservative scaling approach. This initial set- 
ting should be modified when appropriate number of 
shifts cannot be found at the s h i f t e r  a and s h i f t e r  
0. The number of shifts and the resulting integer 
wordlength of the accumulator can be described as 
follows. 

3.2 Determination of the  number of shifts 
for s h i f t e r  a 

A 16 bit data at the input of s h i f t e r  a is aligned 
to the least significant 16 bit of the 32 bit ALU input. 
Thus. a zero bit shift at the s h i f t e r  a corresponds 
to 16 bit right shifts. The number of shifts for the 
s h i f t e r  a can be determined according to Eq.( 5). 
Note that the integer wordlength of the accumulator 
has been determined in Eq.( 4). 

When there is no multiplication, the integer 
wordlength of the accumulator is simply determined as 
the maximum integer wordlength of all the operands 
in the code tree. 

3.3 Determination of the number of shifts 
for s h i f t e r  o 

The number of shifts for the s h i f t e r  o can be de- 
termined as shown in Eq.( 6). 

SO = Wl(ACC) - WI(output) (6) 

When the determined number of shifts for the 
s h i f t e r  o is larger than 7, the integer wordlength 
for the accumulator should be decreased which can be 
conducted by selecting the number of shifts of zero, 
instead of -6, for the s h i f t e r  m. The overall scaling 
procedure for the current code tree should be repeated 
in this case. 

4 Overall compiler structure 

A proposed fixed-point C compiler for TMS320C50 
is implemented by modifying the Zcc, a retar etable C 
compiler made by C. Fraser and D. Hanson [5f [6]. The 
overall development procedures using the fixed-point 
C compiler and its internal structures are shown in 
Fig. 7. Not only the back-ends of the lcc, which con- 
ducts the target specific code generation, but also the 
middle part were modified to implement a few unique 
features in this fixed-point C compiler, such as scaling 
and optimization. Although a new data type is intro- 
duced, the front-ends of the compiler are not modified 
by substituting the ‘ f loa t ’  by the ‘f ix’  data type. 

The integer wordlength of each variable can be 
given either by manually or automatically using the 
the Faxed-Poant Optamization Utility [4], The Faxed- 
Poant Optzmzzataon Utalaty converts the float data type 
variables into corresponding C++ range estimation 
classes, and estimates their integer word-lengths by 
simulation. 

The overall compilation process is as follows. In 
the first step, the compiler preprocesses the source 
programs, conducts lexical analysis and parsing, and 
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builds the abstract syntax trees from the source pro- 
grams. In the abstract syntax trees, each node rep- 
resents one basic operation, and all type conversions 
implicit in the source codes are made explicit. In the 
second step, the compiler builds the directed acyclic 
graphs(dags) from the abstract syntax trees. The dags 
represents the intermediate codes. In the third step, 
with the dags and the integer word-length informa- 
tions, the compiler determines the number of shifts to 
avoid overflows and utilize all the bits. In the fourth 
step, after appropriate optimization, the code genera- 
tor produces the target assembly code by annotating 
the dags. 

Method 

SQNR 

Fixed-point optimizaanm Ullity 

Manual Integer Fixed- Floating- 
assembly’ C’ point C3 point C* 
64.09 21.27 57.69 

Fixed-pant 
c canpllsr 

Front-Ends 

Mid d e - E n ds 

Back-Ends 

. (dB) 
# of 
machine 

Figure 7: Development procedures using the fixed- 
point C compiler 

16 28 43 928 

5 Implementation example and com- 
parison results 

A biquad digital filtering program shown in Eq.( 7) 
and (8) is implemented using floating-point, integer, 
and fixed-point data type. 

ti[.] 
y[n] 

= 1.683ti[n - 13 - 0.7843u[n - 21 + z[n](7) 
= ti[.] - 0.669 ti[. - 11 -k ~ [ n  - 21 (8) 

The integer program can be implemented using the 
integer version of equation shown in Eq.( 9) and (10). 

ti[.] = Q(1.683 x 2‘) Q(u[n - 11 + 2’) (9) 

-Q(0.7843 x 2‘) Q(U[TZ  - 21 + as) + x[.] 
y[.] = 4.1 + u[n - 21 (10) 

-&(0.669 x 2’) &(ti[. - 11 + 2’) 

In the above equation, Q ( )  means the rounding to 
an integer value. If we assign s bits to the coefficients, 
the data needs to be shifted down by the same amount 
because the multiplied result of them should be in the 
lower 16 bit, range to prevent overflows in the inte- 
ger multiplication process. The optimum value for s 
is found to be 7 in this example. The SQNR when 
compared with the floating-point simulation result is 
just 21 dB because of the limited word-length for the 
coefficients and the data. 

In the fixed-point implementation, the coefficients 
and the data can be represented in 16 bit full preci- 
sion because there is no overflow in the multiplication. 
Thus, it is possible to obtain the SQNR of about 58 
dB as shown in Table 1. The fixed-point C programs 
and its compiled codes are shown in Fig. 8 and 9. 

I cycle 
Assembly program translated by the Autoscaler[3]. 
Texas Instruments’ C compiler for TMS320C50, uses the 

Our fixed-point C compiler prototype, employs the ‘ f i x ’  

Texas Instruments’ C compiler for TMS320C50, uses the 

‘ i n t ’  data type[S]. 

data type. 

‘ f l o a t ’  data type. 

#define A0 1.6832491279784571603 
#define AI (-0.78434859552783486869) 
#define B1 (-0.66910090629842178256) 

f i x ( i 4 )  uC3l : 
f i x ( i 5 )  y ;  
f i x ( i 0 )  x ;  

/*  delay */  
u[2] = U C l l ,  U C l l  = uC0l; 

~ [ o ]  = AO*u[I] + Al*u[21 + x i n ;  
y = u[Ol + Bi*u[11 + uC21; 

. . .  

. . .  

Figure 8: A Fixed-point C program for the 2nd order 
IIR filter 
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LACC 
SACH 
LACC 
SACH 
LAR 
LT 

SPM 
PAC 
MAR 
MAR 
SACH 
LAR 
LT 
MPY 
SPM 
PAC 
MAR 
SACH 
LAR 
EAR 
LACC 
LAR 
MAR 
ADD 
ADD 
SACH 
LAR 
LT 
MPY 
SPM 
PAC 
MAR 
SACH 
LACC 
LAR 
MAR 
ADD 
ADD 
SACH 

npy 

. . .  

- u + l ,  16 
-u+2, 0 
- U ,  16 
-u+ l ,  0 
AR2 ,#I 
-u+l 
#6BBAh ; 1.6832491 with IUL 1 
1 

*,AR2 
*0+ 
*, 0 
AR2 , # 2  
-u+2 
#9B9Ah ; -0.78434861 n i t h  IUL 0 
1 

*0+ 

AR2 ,#I 
*0+ 
*, 16 
AR2 , # 2  
*0+ 
*, 15 
- x i n ,  11 
- U ,  1 
AR2, #3  
-u+l 
#0AA5Bh ; -0.66910088 with IUL 0 
1 

*, 0 

*0+ 
* ,  0 
- U ,  15 
AR2 , #3 
*0+ 
*, 15 
-u+2, 15 
-Y, 0 

Figure 9: The compiled version of the above fixed- 
point C program 

The comparison results of the manual assembly, in- 
teger C, and fixed-point C programs are shown in Ta- 
ble l. Texas Instruments C compiler for the TMS 
320C50 are used for compiling the integer and the 
floating-point C programs, while our prototype com- 
piler is used for the fixed-point C program. The com- 
parison results show that the SQNR of the integer C 
program is hardly acceptable. But, the SQNR of the 
fixed-point C program is fairly close to that of the as- 
sembly program. Note that the fixed-point C compiler 
employs a conservative scaling strategy, which results 
in a slight increase of the quantization noise when com- 
pared with the manually assembled program. 

The execution speed of the fixed-point C program is 
nearly 20 times faster than that of the floating-point 
version. Although the execution speed of the fixed- 
point C program is about 2.7 times slower than that 

of the manually coded assembly program, the gap can 
be narrowed down by employing several compiler opti- 
mization techniques[7]. Note that the execution speed 
difference between the integer C and the fixed-point 
C programs is mainly due to the code optimization 
capability of the compilers, not to  the data types. 

6 Concluding remarks 

A fixed-point C language is defined, and a proto- 
type compiler is designed to evaluate the usefulness 
of the language for digital signal processing applica- 
tions. The comparison results show that the new lan- 
guage and its compiler can provide an acceptable com- 
promise to the users of the fixed-point digital signal 
processors in terms of the SQNR, execution speed, 
and the development effort. The fixed- point C pro- 
gram can be prepared very easily by estimating the 
range of each variable using the Fzxed-Poant Optamiza- 
tzon Utilzty and modifying the data type of original 
floating-point C application programs. This modifica- 
tion procedure does not need any change of original 
algorithms, such as coefficients and data scaling into 
the integer domain as required in the design of integer 
programs. 
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