
Fixed-point C Language for Digital Signal Processing

Wonyong Sung and Jiyang Kang
Department of Control and Instrumentation Engineering

and Inter-university Semiconductor Research Center
Seoul National University

S hinlim-Dong , Gwanak- Gu, Seoul 15 1- 742 KO REA
E-mail: wysung@ hdt v.snu.ac. kr and jiyang@hdtv.snu. ac. kr

Abstract

Fixed-point C language i s proposed f o r convenient
and eJgicient programming of fixed-point digital signal
processors. T h i s language has a y x ’ data type tha t can
have a n individual integer word-length according t o the
range of a variable. It can add or subtract t w o data
having different integer word-lengths by automatically
inserting shif t operations. T h e accuracy of fixed-point
multiply operation i s significantly increased by storing
the upper part of the multiplied double-precision re-
sult instead of keeping the lower part as conducted in
the integer multiplication. T h e quantization noise re-
sulting from fixed-point ar i thmet ic i s significantly re-
duced when compared wi th conventional integer pro-
grams. T h e execution speed i s much , nearly 20 t imes ,
f a s t e r t h a n a floating-point C program in fixed-point
digital signal processors.

1 Introduction

Although C language is not very ideal for describing
digital signal processing algorithms] it is widely used
for simulation and algorithm verification. Especially,
C compilers for floating-point digital signal processors
are gaining acceptance because of the shortened de-
velopment time and the improved compiler efficiency.
However, C compilers for fixed-point digital signal pro-
cessors have met with little acceptance [l] especially
because of the overhead in executing floating-point op-
erations using fixed-point data path.

One may use the ‘ i n t ’ data type in C language
not to use floating-point operations, but it results in
a severe loss of accuracy, especially for performing
multiply operations even after careful scaling of the
program. In the integer multiplication of two 16 bit
operands] the lower 16 bit part is stored as the result
among 31 bit of the product as illustrated in Fig. 1.
Thus, we have to severely scale down the input of the
multiplier in order to prevent overflows. Obviously, it
is also tedious to develop integer programs.

In this paper, we introduce. a new, data type,‘f ix,’
and define corresponding arithmetic operations to
solve these problems. A fixed-point C compiler for

1058-6393/96 $5.00 0 1996 IEEE
Proceedings of ASILOMAR-29

816

x(1s:o)
,

16x15 blf
multiplier

I

P(75 0)

I,
to memoly

Figure 1: Integer multiplication

TMS320C50, Texas Instruments’ fixed-point digital
signal processor, is prototyped by modifying a retar-
getable C compiler [a]. The execution speed and the
SQNR of the floating-point] the integer, and the fixed-
point implementations are compared by using a bi-
quad IIR digital filter program.

2 Fixed-point data representation and
arithmetic rules

An integer variable or constant in C language con-
sists of, usually, 16 bits, and the LSB(Least Significant
Bit) has the weight of one for the conversion to or from
the floating-point data type. This can bring overflows
or unacceptable quantization errors when a floating-
point digital signal processing program is converted to
an integer version. Therefore, it is necessary to assign
a different weight to the LSB of a variable or a con-
stant [3] [4]. In order to assign a different weight, we
employed the fixed-point data type that can have an
individual integer word-length as follows:

fix(integer-wordlength) variable-name;

Figure 2 shows a 16 bit fixed-point data format
with the integer word-length of Wl and the fractional
word-length of WF. Note that the range (R) that a

Authorized licensed use limited to: Universidad Nacional Autonoma de Mexico. Downloaded on August 13,2010 at 22:21:46 UTC from IEEE Xplore. Restrictions apply.

Figure 2: A 16 bit two’s complement fixed-point data
format with the Wr of 2

variable can represent and the quantization step (Qs)
are dependent on the integer word-length as follows.

-2wK 5 R < 2 w ~ (1)
(2) Qs = 2-WF = 2-(15-Wr)

For example, with a variable of ‘f ix(2) x’ that has
the integer word-length of 2, the fixed-point signal x
can represent a data between -4 and 4 with the quan-
tization step of 2-13. Note that we can derive the
unsigned, long, and shor t formats based on the same
idea.

The arithmetic rules employing this fixed-point
data representation and a hardware data-path hav-
ing a 16 bit by 16 bit two’s complement multiplier,
a 32 bit ALU, and a barrel shifter can be derived as
follows.

2.1 Addition or subtraction

Two data can be added or subtracted after equal-
izing the integer word-length for them. The integer
word-length can be changed by arithmetic shift op-
erations. An arithmetic right shift of 1 increases the
integer word-length by 1. For example, the program
shown in Fig. 3-(a) can be compiled as depicted in
Fig. 3-(b). Figure 3-(c) also shows the compiled as-
sembly codes for the TMS320C50 fixed-point digital
signal processor.

y = x + y ;

LACC -x, 15
ADD -y , 16
SACH - y , 0

(c)

Figure 3: ‘fix data type add-operation

Note that SFR(1) represents an one-bit arithmetic
right shift.

2.2 Multiplication

Two’s complement multiplication of two 16 bit
data, x and y, yields a 31 bit result in the P regis-
ter, P(30:0), as shown in Fig. 1. Note that an extra
sign bit is eliminated in the two’s complement multi-
plication process. In the fixed-point C, the upper 16
bit part, P(30: 151, is stored as the product as illus-
trated in Fig. 4. For example, the program shown in
Fig. 5-(a) can be compiled as depicted in Fig. 5-(b).
Figure 5-(c) also shows the compiled codes for the
TMS320C50 using the fixed-point C compiler.

x(l5:O)

I

Figure 4: Fixed-point multiplication

y = x * y ;

(a)
P-reg(31 :O) = HUL (x , y) ;
y = SFL(2)P_reg(30:15);

(b)

LT -x
WPY -y
SPH 1 ; shift left

; by one b i t
PAC
SACH - y , 2

(c)

oduct

Figure 5: ‘fix’ data type multiply-operation

Note that SACH(store high accumulator) instruc-
tion for storing the upper part of the product is used
instead of the usual SACL(store low accumulator) in-
struction. Here, SFL(2) represents a two-bit arith-
metic left-shift.

3 Determination of the number of
shifts

The TMS320C50 has three barrel shifters at the
data-path as shown in Fig. 6. Each of them will

817

Authorized licensed use limited to: Universidad Nacional Autonoma de Mexico. Downloaded on August 13,2010 at 22:21:46 UTC from IEEE Xplore. Restrictions apply.

16 I16

Figure 6: Simplified data path of the TMS320C50

be denoted as s h i f t e r a, s h i f t e r m, and s h i f t e r
0. The s h i f t e r a is for scaling the direct input to
the accumulator, and used in the instructions such
as ADD(add), SUB(subtract), and LACC(1oad). The
s h i f t e r m is for scaling the multiplier output, and af-
fects the result of the instructions such as PAC(1oad
with product) and APAC(accumu1ate with product).
The s h i f t e r o scales the accumulator output when
the data is moved into memory location by the SACL
or SACH instructions. Each shifter is significantly dif-
ferent from each other in its shifting capability.

We know the integer wordlength of all the input
and output operands to the data path, but do not
have any information to the range of the accumulator
which can only be obtained at the simulation time.

3.1 Determination of the number of shifts
for s h i f t e r m

The number of shifts for s h i f t e r m should be de-
termined first because it does not support continuous
scaling. The number of shifts of -6 is used when the
integer wordlength of the accumulator is larger than
that of the multiplied results, such as the case of loop
operation. The number of shifts of 1 is employed for
eliminating the superfluous sign bit in two’s comple-
mentary multiplication. Note that selecting the num-
ber of shifts of -6 can prevent the overflows in the accu-
mulator, but increases the quantization noise. Since
we do not know the integer wordlength of the accu-
mulator at the compile time, we initially assume the
number of shifts of -6 for the s h i f t e r m, which means
a very conservative scaling approach. This initial set-
ting should be modified when appropriate number of
shifts cannot be found at the s h i f t e r a and s h i f t e r
0. The number of shifts and the resulting integer
wordlength of the accumulator can be described as
follows.

3.2 Determination of the number of shifts
for s h i f t e r a

A 16 bit data at the input of s h i f t e r a is aligned
to the least significant 16 bit of the 32 bit ALU input.
Thus. a zero bit shift at the s h i f t e r a corresponds
to 16 bit right shifts. The number of shifts for the
s h i f t e r a can be determined according to Eq.(5).
Note that the integer wordlength of the accumulator
has been determined in Eq.(4).

When there is no multiplication, the integer
wordlength of the accumulator is simply determined as
the maximum integer wordlength of all the operands
in the code tree.

3.3 Determination of the number of shifts
for s h i f t e r o

The number of shifts for the s h i f t e r o can be de-
termined as shown in Eq.(6).

SO = Wl(ACC) - WI(output) (6)

When the determined number of shifts for the
s h i f t e r o is larger than 7, the integer wordlength
for the accumulator should be decreased which can be
conducted by selecting the number of shifts of zero,
instead of -6, for the s h i f t e r m. The overall scaling
procedure for the current code tree should be repeated
in this case.

4 Overall compiler structure

A proposed fixed-point C compiler for TMS320C50
is implemented by modifying the Zcc, a retar etable C
compiler made by C. Fraser and D. Hanson [5f [6]. The
overall development procedures using the fixed-point
C compiler and its internal structures are shown in
Fig. 7. Not only the back-ends of the lcc, which con-
ducts the target specific code generation, but also the
middle part were modified to implement a few unique
features in this fixed-point C compiler, such as scaling
and optimization. Although a new data type is intro-
duced, the front-ends of the compiler are not modified
by substituting the ‘ f loa t ’ by the ‘f ix’ data type.

The integer wordlength of each variable can be
given either by manually or automatically using the
the Faxed-Poant Optamization Utility [4], The Faxed-
Poant Optzmzzataon Utalaty converts the float data type
variables into corresponding C++ range estimation
classes, and estimates their integer word-lengths by
simulation.

The overall compilation process is as follows. In
the first step, the compiler preprocesses the source
programs, conducts lexical analysis and parsing, and

8 18

Authorized licensed use limited to: Universidad Nacional Autonoma de Mexico. Downloaded on August 13,2010 at 22:21:46 UTC from IEEE Xplore. Restrictions apply.

builds the abstract syntax trees from the source pro-
grams. In the abstract syntax trees, each node rep-
resents one basic operation, and all type conversions
implicit in the source codes are made explicit. In the
second step, the compiler builds the directed acyclic
graphs(dags) from the abstract syntax trees. The dags
represents the intermediate codes. In the third step,
with the dags and the integer word-length informa-
tions, the compiler determines the number of shifts to
avoid overflows and utilize all the bits. In the fourth
step, after appropriate optimization, the code genera-
tor produces the target assembly code by annotating
the dags.

Method

SQNR

Fixed-point optimizaanm Ullity

Manual Integer Fixed- Floating-
assembly’ C’ point C3 point C*
64.09 21.27 57.69

Fixed-pant
c canpllsr

Front-Ends

Mid d e - E n ds

Back-Ends

. (dB)
of
machine

Figure 7: Development procedures using the fixed-
point C compiler

16 28 43 928

5 Implementation example and com-
parison results

A biquad digital filtering program shown in Eq.(7)
and (8) is implemented using floating-point, integer,
and fixed-point data type.

ti[.]
y[n]

= 1.683ti[n - 13 - 0.7843u[n - 21 + z[n](7)
= ti[.] - 0.669 ti[. - 11 -k ~ [n - 21 (8)

The integer program can be implemented using the
integer version of equation shown in Eq.(9) and (10).

ti[.] = Q(1.683 x 2‘) Q(u[n - 11 + 2’) (9)

-Q(0.7843 x 2‘) Q(U[TZ - 21 + as) + x[.]
y[.] = 4.1 + u[n - 21 (10)

-&(0.669 x 2’) &(ti[. - 11 + 2’)

In the above equation, Q () means the rounding to
an integer value. If we assign s bits to the coefficients,
the data needs to be shifted down by the same amount
because the multiplied result of them should be in the
lower 16 bit, range to prevent overflows in the inte-
ger multiplication process. The optimum value for s
is found to be 7 in this example. The SQNR when
compared with the floating-point simulation result is
just 21 dB because of the limited word-length for the
coefficients and the data.

In the fixed-point implementation, the coefficients
and the data can be represented in 16 bit full preci-
sion because there is no overflow in the multiplication.
Thus, it is possible to obtain the SQNR of about 58
dB as shown in Table 1. The fixed-point C programs
and its compiled codes are shown in Fig. 8 and 9.

I cycle
Assembly program translated by the Autoscaler[3].
Texas Instruments’ C compiler for TMS320C50, uses the

Our fixed-point C compiler prototype, employs the ‘ f i x ’

Texas Instruments’ C compiler for TMS320C50, uses the

‘ i n t ’ data type[S].

data type.

‘ f l o a t ’ data type.

#define A0 1.6832491279784571603
#define AI (-0.78434859552783486869)
#define B1 (-0.66910090629842178256)

f i x (i 4) uC3l :
f i x (i 5) y ;
f i x (i 0) x ;

/* delay */
u[2] = U C l l , U C l l = uC0l;

~ [o] = AO*u[I] + Al*u[21 + x i n ;
y = u[Ol + Bi*u[11 + uC21;

. . .

. . .

Figure 8: A Fixed-point C program for the 2nd order
IIR filter

819

Authorized licensed use limited to: Universidad Nacional Autonoma de Mexico. Downloaded on August 13,2010 at 22:21:46 UTC from IEEE Xplore. Restrictions apply.

LACC
SACH
LACC
SACH
LAR
LT

SPM
PAC
MAR
MAR
SACH
LAR
LT
MPY
SPM
PAC
MAR
SACH
LAR
EAR
LACC
LAR
MAR
ADD
ADD
SACH
LAR
LT
MPY
SPM
PAC
MAR
SACH
LACC
LAR
MAR
ADD
ADD
SACH

npy

. . .

- u + l , 16
-u+2, 0
- U , 16
-u+ l , 0
AR2 ,#I
-u+l
#6BBAh ; 1.6832491 with IUL 1
1

*,AR2
*0+
*, 0
AR2 , # 2
-u+2
#9B9Ah ; -0.78434861 n i t h IUL 0
1

*0+

AR2 ,#I
*0+
*, 16
AR2 , # 2
*0+
*, 15
- x i n , 11
- U , 1
AR2, #3
-u+l
#0AA5Bh ; -0.66910088 with IUL 0
1

*, 0

*0+
* , 0
- U , 15
AR2 , #3
*0+
*, 15
-u+2, 15
-Y, 0

Figure 9: The compiled version of the above fixed-
point C program

The comparison results of the manual assembly, in-
teger C, and fixed-point C programs are shown in Ta-
ble l. Texas Instruments C compiler for the TMS
320C50 are used for compiling the integer and the
floating-point C programs, while our prototype com-
piler is used for the fixed-point C program. The com-
parison results show that the SQNR of the integer C
program is hardly acceptable. But, the SQNR of the
fixed-point C program is fairly close to that of the as-
sembly program. Note that the fixed-point C compiler
employs a conservative scaling strategy, which results
in a slight increase of the quantization noise when com-
pared with the manually assembled program.

The execution speed of the fixed-point C program is
nearly 20 times faster than that of the floating-point
version. Although the execution speed of the fixed-
point C program is about 2.7 times slower than that

of the manually coded assembly program, the gap can
be narrowed down by employing several compiler opti-
mization techniques[7]. Note that the execution speed
difference between the integer C and the fixed-point
C programs is mainly due to the code optimization
capability of the compilers, not to the data types.

6 Concluding remarks

A fixed-point C language is defined, and a proto-
type compiler is designed to evaluate the usefulness
of the language for digital signal processing applica-
tions. The comparison results show that the new lan-
guage and its compiler can provide an acceptable com-
promise to the users of the fixed-point digital signal
processors in terms of the SQNR, execution speed,
and the development effort. The fixed- point C pro-
gram can be prepared very easily by estimating the
range of each variable using the Fzxed-Poant Optamiza-
tzon Utilzty and modifying the data type of original
floating-point C application programs. This modifica-
tion procedure does not need any change of original
algorithms, such as coefficients and data scaling into
the integer domain as required in the design of integer
programs.

References

Buyer’s Guade t o DSP Processors, Berkeley Design
Technology, Inc.

TMS32OC5x User’s Guade, Houston, Texas Instru-
ments Inc., 1993.

Seehyun Kim and Wonyong Sung, “A floating-
point to fixed-point assembly program translator
for the TMS320C25,” IEEE Trans. Carcuats and
Systems, Vol. 41, no. 11, pp. 730-739, Nov. 1994.

Seehyun Kim, Ki-I1 Kum, and Wonyong Sung,
“Fixed-point optimization utility for C and C++
based digital signal processing programs,” in Proc.
1995 IEEE Workshop on VLSI Sagnad Processzng,
pp. 197-206, Oct. 1995.

C. Fraser and D. Hanson, “A retargetable compiler
for ANSI C,” SIGPLAN Notzces, Vol. 26, no. 10,
1995.

C. Fraser and D. Hanson, A Retargetable C
Compaler: Desagn and Implementataon, Ben-
jamin/Cummings, 1995.

A. V. Aho, R. Sethi, and J . D. Ullman, Compal-
ers: Prancaples, Technaques, and Tools, Addison
Wesley, 1986.

[8] TMS32OC2x/C2xx/C5z Optamazang C Compiber,
Houston, Texas Instruments Inc., 1995.

820

Authorized licensed use limited to: Universidad Nacional Autonoma de Mexico. Downloaded on August 13,2010 at 22:21:46 UTC from IEEE Xplore. Restrictions apply.

