
FIXED-POINT MATH IN TIME-CRITICAL C APPLICATIONS
Mark B. Kraeling

Cummins Engine Company
1460 National Rogd, MS C7004

Columbus, Indiana 47201
email: kraeling@cel.cummins.com

ABSTRACT

When optimizing C to improve the speed of
execution, using fixed-point math as opposed to
floating-point emulation can help the user make
big improvements. It is the single largest
improvement a programmer can make in C to
reduce execution time.

This paper will start with floating-point
equations, and show the steps necessary to
convert them to fixed-point equations. Basic
equations will be used at the beginning, but then
will progress to more advanced problems in the
fixed-point implementation. The paper will also
analyze the assembly output after converting to
fixed-point, and data will be presented from
multiple platforms that shows the speed
improvement.

MATHEMATICAL IMPLEMENTATiONS

There are three distinct ways that math can
be implemented on microprocessors and
microcontrollers today. Each carries different
complexity and costs to the platform.

The first implementation of math is hardware-
assisted floating-point. This involves the use of
hardware to perform floating-point operations.
The floating-point hardware can take floating-
point instructions used in the software code and
manipulate them. Such hardware is complex, and
takes up a significant amount of space and power
in the microprocessor l a y o u t . M o s t
microprocessors and microcontrollers used for
embedded or smaller platform development do

not have this hardware, since the cost of adding
the hardware can be expensive.

The second irriplementation is floating-point
emulation. This involves using the
microprocessors’ integer operations to perform
floating-point math. Special compiler libraries
convert the floatingpoint used in the software to
use the available integer operations. These
floating-point libraries take up a significant
amount of RAM ancl fixed memory space, as well
as more processing time. The amount of program
space the libraries take up is dependent on the
complexity of floating-point used in the software.
Program space arid execution time are also
dependent on the compiler vendor, since each
vendor implements the floating-point libraries
differently.

The third impleimentation is using fixed-point
math. Signed or unsigned integers are used to
represent fractional numbers. This representation
is done through the use of a fixed scaling for the
number. Using fixed-point math allows the
compiler to use norimal microprocessor machine
instructions for mathiematical operations. There is
no need for the compiler to pull in special libraries.
This implementation yields low per platform Costs
since floating-point hardware is not required. It
also saves program space and execution time
since no special llibraries for floating-point
manipulation need

FLOAT I N G - P 0
FORMAT

to be called.

PJT AND FIXED-POINT

Floating-point niumbers used in software are
declared using the “float” declaration in ANSI C.
When these floating-point numbers are declared,

ISBN# 0-7803-3274-1 587

Authorized licensed use limited to: Universidad Nacional Autonoma de Mexico. Downloaded on August 13,2010 at 22:22:50 UTC from IEEE Xplore. Restrictions apply.

mailto:kraeling@cel.cummins.com

the resulting space allocated for the variable is
divided up between the sign bit, mantissa, and
exponent. The mantissa controls the accuracy of
the number, using the bits allocated to it to hold
the floating-point number not including the
exponent. The exponent controls the scaling of
the number by using a number to show decimal
place movement.

1 .o Ob000001 ObOO 0x04

0.0 ObOOOOOO ObOO ox00

30.5 Ob01 11 10 Ob1 0 Ox7A

When floating-point numbers were first
implemented my microprocessor manufacturers,
no clear standard for allocation of the mantissa,
exponent, and sign bit existed. IEEE-754, the
standard for floating-point arithmetic, was then
completed to show this data representation and
how i t should be used. The al location
implementing a 32-bit “float” in ANSI C consists of
a sign bit, an 8-bit biased exponent, and a 23-bit
mantissa. The allocation implementing a 64-bit
“double float” in ANSI C consists of a sign bit, an
11-bit b iased exponent, and a 52-bit
mantissa.The biasing of the exponent consists of
the exponent value with a fixed +127 offset to take
care of the signed issues. The calculation of the
mantissa consists of determining the fraction
field, adding the implicit normalized bit, and
determining the value based on this number and
the addition of exponents. The process becomes
more complicated as more decimal digits are
added to the floating-point number.

1.0

0.0

-1.0

0.75

Below are some floating-point numbers and
the values placed in the sign-bit, the biased
exponent, and the mantissa. The floating-point
libraries would then have to manipulate this final
result 32-bit number.

0 ObOlllllll Ob000000000..

0 Ob00000000 Ob000000000..

1 Ob01111111 Ob000000000..

0 ObOllllllO Ob100000000..

0.75 1 ObOOOOOO

Fixed-point numbers used in software are
declared with integral data types. These data

Ob1 1 0x03

types and their corresponding size are compiler
and platform dependent. Using these fixed-point
numbers allows the compiler to use machine
instructions already built in to the microprocessor
to manipulate the numbers. Cases where the
programmer needs to manipulate numbers larger
than the microprocessor size will cause the
compiler to use libraries, much like the libraries
used for floating-point manipulation.

There are two popular ways to implement
integer and fixed-point math. The first way is
through the use of a radix point within an integer.
This point marks the spot where bits to the right
represent a fractional base-2 addition to the
number on the left of the radix point. The first bit
to the right of the radix point would represent 0.5
(2-’), the second 0.25 (2-2), and so on. This way
the programmer can represent fractional
quantities but still use the built-in microprocessor
math manipulation instructions. As the radix point
is moved to the left, the fractional part increases
but the min/max of the variable decreases.
Shown below is an example layout of a 8-bit
unsigned integer with a radix point that allows a
resolution of 0.25 and a range of 0 - 63.75.

MSB LSB

I
Fixed-

Number /(left of radix) (right of radix) 8 Result - _ _ -I_ --_.I -. -

I I

588

Authorized licensed use limited to: Universidad Nacional Autonoma de Mexico. Downloaded on August 13,2010 at 22:22:50 UTC from IEEE Xplore. Restrictions apply.

track of this scaling then remembers to divide by
10 to get the final result after manipulation. This is
a less desirable way to implement fixed-point
math since it doesn’t allow the compiler to take
advantage of bit-shifting for certain multiply and
divide operations.

Piatform Fixed-Point
Size Compiler Time (elk)

.

In both implementation strategies for fixed-
point math, the programmer must keep track of
the radix point or the non base-2 scaling. It carries
with i t some added complexity since the
programmer must now do extra operations to take
care of scaling issues. These issues and ways to
implement fixed-point operations will now be
shown.

Floating-
Point Time

(elk) ___ ..

MOVING FROM FLOATING- TO FIXED-POINT

8-bit
8-bit

32-bit

32-bit

The improvements in moving from floating-
point to fixed-point will vary by compiler and
platform. In order to see the increase in speed of
execution, two different compilers for two different
platforms were used. On an 8-bit platform,
compiler A took 44 clock cycles to set up and
multiply two 8-bit fixed-point numbers. It took
compiler A 690 clock cycles to set up and multiply
two floating-point numbers. On the same 8-bit
platform, compiler B took 48 clock cycles to set up
and multiply two 8-bit fixed-point numbers. It took
compiler B 650 clock cycles to set up and multiply
two floating-point numbers. On a 32-bit platform,
compiler C took 65 clock cycles to set up and
multiply two 32-bit fixed-point numbers. It took
compiler C 95 clock cycles to set up and multiply
two floating-point numbers. On the same 32-bit
platform, compiler D took 72 clock cycles to set up
and multiply two 32-bit fixed-point numbers. It
took compiler D 112 clock cycles to set up and
multiply two floating-point numbers. These results
are summarized in the table below.

A 44 690
B 48 650

C 65 95

D 72 112

As discussed in the previous section, with
floating-point numbers you do not need to worry
about the scaling (of the number. When floating-
point numbers are multiplied, the compiler will
multiply the numbers and take care of the
mantissa, sign, and exponent for you. For fixed-
point numbers, the programmer must keep track
of the scaling of the numbers in order to use them.
In order to see how scaling is taken care of, this
section will walk through some examples and
show what is needed for the floating-point and
fixed-point cases.

Consider the following formula with variables
A, B, C, D:

A = B + C - D

When using floating-point to calculate the
result, the type “float” is used in the software
code. Each of these variables are declared with
this type, and added together normally. The
compiler automatically adjusts the variables to
keep maximum accuracy while also preventing
overflow. The following code segment shows how
these floating-point numbers are manipulated.

float A, B, C, D;

A = B + C - D ;

When using fixed-point to calculate the result,
you must declare an integral type that matches
the accuracy and range of each variable. Say for
instance that variables B, C, and D each had a
minimum of zero, a maximum of 300, and a
required accuracy of 0.05. In order to determine
the scaling of the number, scaling is equal to 1/
accuracy or greater. For this example the required
scaling is at least ,20. When using addition and
subtraction, it is mulch easier to manipulate fixed-
point numbers when the scaling for the variables
is the same, so variables A, B, C, and D will have
a scaling of 20.

In order to determine what size of integral type
to declare, take the scaling and multiply by the
range of the variable. For types B, C, and D,
multiplying 20 by 300 yields 6000. For this
example, B, C, and D will be declared as 16-bit
unsigned integers. Since variable A is the result of
the calculation, its range is determined by B, C,

589

Authorized licensed use limited to: Universidad Nacional Autonoma de Mexico. Downloaded on August 13,2010 at 22:22:50 UTC from IEEE Xplore. Restrictions apply.

and D. For a maximum value, A is equal to the
maximum of B plus the maximum of C minus the
minimum of D. For a minimum value, A is equal to
the minimum of B plus the minimum of C minus
the maximum of D. So A will have a minimum of -
300, a maximum of 600, and keep the same
accuracy requirements. Taking the scaling of type
A and multiplying by the range, or multiplying 20
by 900, yields 18000. For this example, A will be
declared as a 16-bit signed integer.

2.375

2.375 * 16 =
38

1

1 * 1 6 = 1 6

Since the scaling for variables A, B, C, and D
are the same, no special manipulation needs
performed in the calculation. The following code
segment shows how these fixed-point numbers
are manipulated. ANSI C requires type casting
the unsigned variables B, C, and D to yield a
signed result. This type casting is not needed if all
variables are declared as integers.

4.4375 .03125 6.781 25

4.4375 * 16 .03125 * 32 (38 + 71)*2
= 71 = 1 - 1 = 217

1 1 1

1 * 1 6 = 1 6 1 * 3 2 = 3 2 (16+16)*2
- 3 2 ~ 3 2

unsigned int B, C, D;
int A;

A = (int)B + (int)C - (int)D

For this example we could also declare the
scaling to be 32. In this way, we could keep base-
2 scaling which is preferred to help the compiler
utilize bit-shifting instead of multiplies and divides,
making the code faster. The code written above
would not change in any way if you were to pick a
scaling of 32 instead of 20, since the integral
types would not change. The programmer will
always need to remember the scaling used for the
variables so whenever they are referenced or
needed in the code, scaling issues can be
handled.

For the same example used above, lets say
that the variables B, C, and D are already used in
other places in the code. The scaling for B and C
is 16, and the scaling of D is 32. Since they are
used other places, it is too much of a mess to
change what the scaling is without affecting other
code locations. 16-bit unsigned integers were
chosen as the integral types for these variables.
Taking the minimum and maximum and
multiplying by the scaling of each of the variables
should be within the 16-bit unsigned integer
boundaries.

~

590

Since the scaling of variables B, C, and D are
different, they cannot be added normally. The
radix point for the variables is in different places,
so each of the bits in the integral type does not
carry the same weight. In order to add and
subtract these variables, they must have the
same scaling. In order to keep as much accuracy
as possible, adjust the lower scaling numbers
(B,C) to the higher scaling numbers (D). The
result (A) should maintain the higher scaling
whenever possible. The code segment below
shows the equation implemented with the
different scalings for A, B, C, and D:

unsigned int B, C, D;
int A;

A = (int)(B + C) * 2 - D;

The code segment above shows B and C
being adjusted to a scaling from 16 to 32 by
adding weight to the numbers. The table below
shows the real values of B, C, and D, the software
variable fixed-point values of B, C, and D, and the
result of the calculation.

Notice in the table above that the fixed-point
A result is the scaling of A multiplied by the real A
result. This is a good check to make sure that the
calculation is written correctly.

Consider the following formula with variables
A, B, C, D:

A = B * C / D

Authorized licensed use limited to: Universidad Nacional Autonoma de Mexico. Downloaded on August 13,2010 at 22:22:50 UTC from IEEE Xplore. Restrictions apply.

When using floating-point to calculate the
result, the type “float” is again used in the
software code. Each of these variables are
declared with this type, and multiplied together
normally. The compiler automatically adjusts the
variables to keep maximum accuracy while also
preventing overflow. The following code segment
shows how these floating-point numbers are
manipulated.

float A, B, C, D;

A = B * C/D;

When using fixed-point to calculate the result,
you must declare an integral type that matches
the accuracy and range of each variable. Say for
instance that variables B, C, and D each had a
minimum of zero, a maximum of 400, and a
required accuracy of 0.1. In order to determine
the scaling of the number, scaling is equal to 1/
accuracy or greater. For this example the required
scaling is at least 10. It is preferable to use base-
2 numbers, so a scaling of 16 will be used, which
is greater than the required 10. When using
multiplication and division, it isn’t as important to
try to keep the same scaling as it was with
addition and subtraction. But keeping consistency
will help with later calculations.

In order to determine what size of integral type
to declare, take the scaling and multiply by the
range of the variable. For types B, C, and D,
multiplying 16 by 400 yields 6400. For this
example, B, C, and D will be declared as 16-bit
unsigned integers. Since variable A is the result of
the calculation, its range is determined by B, C,
and D. For a maximum value, A is equal to the
maximum of B multiplied by the maximum of C
divided by the minimum of D. For a minimum
value, A is equal to the minimum of B multiplied
by the minimum of C divided by the maximum of
D. So A will have a minimum of 0 and a maximum
of 40,960,000, as long as D is not equal to zero.
Whenever numbers are multiplied in an equation,
the accuracy of the result increases. Whenever
they are divided, the accuracy of the result
decreases. When using multiplication and
division, it is important to determine what the
required accuracy is before laying out the
equation. For this example, let’s keep the

accuracy at 16. Taking the scaling of type A and
multiplying by the range, or multiplying 16 by
40,960,000, yields 655,360,000. For this
example, A will be declared as a 32-bit unsigned
integer.

Since we are rnultiplying and dividing, the
scalings of the fixed-point numbers interfere in the
result of the calculation. The scaling of the final
result A is equal to the scaling of B times the
scaling of C divided by the scaling of D. This
comes out to be 16, which is what we require. So
scaling does not interfere in the calculation.

unsigned int B, c, D;
unsigned long1 int A;

if (D != 0)
A = (unsigned long int)B *

(unsigned long int)C /
(unsigned long int)D;

For the same example used above, lets say
that the variables B, IS, and D are already used in
other places in the code. The scaling for 6 and C
is 16, and the scaling of D is 8. Since they are
used other places, it is too much of a mess to
change what the scalling is without affecting other
code locations. 16-bit unsigned integers were
chosen as the integral types for these variables.
Taking the minimum and maximum and
multiplying by the scaling of each of the variables
should still be within the 32-bit unsigned integer
boundaries.

For this example,, since D only has an scaling
of 8, we will choose the scaling of A to also be 8.
The scaling of the final result A without
manipulation is the scaling of B (16) times the
scaling of C (16) divided by the scaling of D (8),
which yields 32. In order to get A to have a scaling
of 8, we must divide the result by 4 (32/4 = 8). The
code segment below shows the equation
implemented with the different scalings for A, 6,
C, and D:

unsigned int B, C, D;
unsigned long inlt A;

A = (unsigned long int)B *

(unsigned long int)C /
(unsigned long int)D / 4;

59 1

Authorized licensed use limited to: Universidad Nacional Autonoma de Mexico. Downloaded on August 13,2010 at 22:22:50 UTC from IEEE Xplore. Restrictions apply.

The code segment above shows the equation
adjusted by 4 to get A to the proper scaling. The
table below shows the real values of B, C, and D,
the software variable fixed-point values of 6, C,
and D, and the result of the calculation.

2.375

2.375 * 16 =
38

1

1 * 16 = 16

4.4375

4.4375 * 16
= 71

1

1 * 1 6 = 1 6

1.25

1.25 * 8 =
10

1

1 * 8 = 8

8.43125

38 * 71 / 10
/ 4 = 6 7

1
16 * 16/ 8 /
4 = 8

Notice in the table above that the fixed-point
A result is the scaling of A multiplied by the real A
result. This is a good check to make sure that the
calculation is written correctly.

FIXED-POINT IMPLEMENTATIONS

Now that the basis for fixed-point and the
improvements using fixed-point have been
covered, this section wil l show different
implementations of fixed-point and how to deal
with special cases. It will also show some
examples of things to watch out for when
implementing fixed-point math equations.

As mentioned in the previous section,
wherever base-2 fixed-point constants are used,
the compiler may substitute the operations with
left- and right-shift operations. This is one of the
added benefits of using fixed-point math. Below is
an example where bit shifting is used in place of a
machine divide.

Code:
static unsigned char j, k, n;

static void example(void)
{

j = k * n / 2;
1

Assembler Output:
ldab n ; places n in register
ldaa k ; places k in register
mu1 ; performs machine multiply
lsrb
stab j
rtS

; bit shift 1 to right (/2)

It is also important to remember that
whenever a fixed-point divide is used, the
resulting decimal digits from the divide are
chopped off. This can cause inaccuracies in your
calculation. In order to keep as much accuracy as
possible, multiply in the equation first then divide.
In the example A = B * C / D, multiply B and C first
then divide by D. If the scaling needs adjusted in
the equation by multiplying, then adjust the
scaling first before dividing.

If B and C have a scaling of 4, and D has a
scaling of 16, and we wish A to have a scaling of
4, we need to multiply the equation by 4 to adjust
the scaling. Remember, this is calculated by
taking the scaling of B (4), multiplying by the
scaling of C (4), and dividing by the scaling of D
(16), which comes out to 1. We want A to have a
scaling of 4, so we need to multiply by 4.
Multiplying is done first, then dividing in the code
segment below.

unsigned int B, C, D;
unsigned long int A;

i f (D !=O)
A = (unsigned long int)B *

(unsigned long int)C *
4 / (unsigned long int)D;

592

When adding and multiplying In the same
equation, the scaling becomes even more
confusing. Remember when adding or
subtracting, the scaling of the two variables must
be the same. Remember when multiplying, the
scaling of the result will be equal to the
multiplication of the two scale factors. Remember
when dividing, the scaling of the result will be
equal to the division of the two scale factors. To
come up with an example of having to address

Authorized licensed use limited to: Universidad Nacional Autonoma de Mexico. Downloaded on August 13,2010 at 22:22:50 UTC from IEEE Xplore. Restrictions apply.

many scaling issues, consider the following
variables without worrying about ranges. B has a
scaling of 8, C has a scaling of 4, and D has a
scaling of 16. The result A needs to have a
scaling of 8. The equation A = (B + C) * D will be
used.

unsigned int B, c, D;
unsigned long int A;

A = ((unsigned long int)B +
((unsigned long int)C * 2)) *
(unsigned long int)D
116;

In the code segment above, the multiplication
by 2 adjusts C to have the same scaling as B (8)
so they can be added together. This result is then
multiplied by D. The last step is to divide the result
by 16 so it can have the correct units for A. Again,
make sure the scaling is the same before adding,
and adjust the scaling as needed after multiplying
and dividing.

When using fixed-point math, minimize the
number of different scale factors as much as
possible. This can be achieved by always using a
standard scaling for types of parameters. For
instance, whenever engine speed is used in the
code, use a fixed scaling such as 4. Having an
accuracy of 1/4 RPM wherever it is used in the
code will help keep consistency and minimize
extra manipulation in the calculations. When
comparing engine speed to limits or other engine
speed values, regular calculations can be made.
Keep common scale factors in a header file group
together, wherever it is appropriate.

Avoid using “magic numbers’’ as well. The
values “2” and “1 6 in the code above come from
fixed numbers. The “2” could actually be a #define
that is defined as the scaling of B divided by the
scaling of C. The same could be done for “16”. In
this way, if someone decides to change the
scaling of one of the variables, it is less work to
change it, since the equations that use this
variable will automatically adjust when re-
compiled. Ranges should still be checked to
make sure there are no overflow problems.

Don’t forget when multiplying fixed-point
numbers, to cast the variables when necessary.
The compiler normally interprets the result size of
the calculation to be whatever size that is being
used to calculate it. When multiplying 16-bit
numbers and placing in a 32-bit result, you must
cast the 16-bit number to 32-bit before
multiplying.

CONCLUSIONS

Whether or not to use fixed-point math instead
of floating-point emulation should be decided
based on execution speed and memory
constraints. As shown in the examples,
implementing fixed-point math can be tricky. The
scaling of the fixed-point numbers must
constantly be consiidered, otherwise using them
in multiplication can yield incorrect results.

Make sure when implementing fixed-point
math that your calculations are double-checked.
This can easily be? done by making up some
floating-point numbers and calculating what the
result should be. Then convert these numbers to
their fixed-point counterparts, and plug into the
equation. Calculate the number as written in the
code with a calculator, and chop off any decimal
places after any divide or shift operation. Once
the final fixed-point result is found, divide by the
scaling of the result to make sure it is equal to the
expected result.

The suggestions and ideas presented in this
paper should be tried out on your particular
platform and compiler. It is important to measure
the percent improvement in moving from floating-
point emulation to fixed-point to quantify the
change. I f there is a large measured
improvement, the payoffs in execution time, RAM,
and fixed-memory are right around the comer.

593

Authorized licensed use limited to: Universidad Nacional Autonoma de Mexico. Downloaded on August 13,2010 at 22:22:50 UTC from IEEE Xplore. Restrictions apply.

