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ABSTRACT 

When optimizing C to improve the speed of 
execution, using fixed-point math as opposed to 
floating-point emulation can help the user make 
big improvements. It is the single largest 
improvement a programmer can make in C to 
reduce execution time. 

This paper will start with floating-point 
equations, and show the steps necessary to 
convert them to fixed-point equations. Basic 
equations will be used at the beginning, but then 
will progress to more advanced problems in the 
fixed-point implementation. The paper will also 
analyze the assembly output after converting to 
fixed-point, and data will be presented from 
multiple platforms that shows the speed 
improvement. 

MATHEMATICAL IMPLEMENTATiONS 

There are three distinct ways that math can 
be implemented on microprocessors and 
microcontrollers today. Each carries different 
complexity and costs to the platform. 

The first implementation of math is hardware- 
assisted floating-point. This involves the use of 
hardware to perform floating-point operations. 
The floating-point hardware can take floating- 
point instructions used in the software code and 
manipulate them. Such hardware is complex, and 
takes up a significant amount of space and power 
in the microprocessor l a y o u t .  M o s t  
microprocessors and microcontrollers used for 
embedded or smaller platform development do 

not have this hardware, since the cost of adding 
the hardware can be expensive. 

The second irriplementation is floating-point 
emulation. This involves using the 
microprocessors’ integer operations to perform 
floating-point math. Special compiler libraries 
convert the floatingpoint used in the software to 
use the available integer operations. These 
floating-point libraries take up a significant 
amount of RAM ancl fixed memory space, as well 
as more processing time. The amount of program 
space the libraries take up is dependent on the 
complexity of floating-point used in the software. 
Program space arid execution time are also 
dependent on the compiler vendor, since each 
vendor implements the floating-point libraries 
differently. 

The third impleimentation is using fixed-point 
math. Signed or unsigned integers are used to 
represent fractional numbers. This representation 
is done through the use of a fixed scaling for the 
number. Using fixed-point math allows the 
compiler to use norimal microprocessor machine 
instructions for mathiematical operations. There is 
no need for the compiler to pull in special libraries. 
This implementation yields low per platform Costs 
since floating-point hardware is not required. It 
also saves program space and execution time 
since no special llibraries for floating-point 
manipulation need 

FLOAT I N G - P 0 
FORMAT 

to be called. 

PJT AND FIXED-POINT 

Floating-point niumbers used in software are 
declared using the “float” declaration in ANSI C. 
When these floating-point numbers are declared, 
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the resulting space allocated for the variable is 
divided up between the sign bit, mantissa, and 
exponent. The mantissa controls the accuracy of 
the number, using the bits allocated to it to hold 
the floating-point number not including the 
exponent. The exponent controls the scaling of 
the number by using a number to show decimal 
place movement. 

1 .o Ob000001 ObOO 0x04 

0.0 ObOOOOOO ObOO ox00 

30.5 Ob01 11 10 Ob1 0 Ox7A 
____ 

When floating-point numbers were first 
implemented my microprocessor manufacturers, 
no clear standard for allocation of the mantissa, 
exponent, and sign bit existed. IEEE-754, the 
standard for floating-point arithmetic, was then 
completed to show this data representation and 
how i t  should be used. The al location 
implementing a 32-bit “float” in ANSI C consists of 
a sign bit, an 8-bit biased exponent, and a 23-bit 
mantissa. The allocation implementing a 64-bit 
“double float” in ANSI C consists of a sign bit, an 
11-bit b iased exponent, and a 52-bit  
mantissa.The biasing of the exponent consists of 
the exponent value with a fixed +127 offset to take 
care of the signed issues. The calculation of the 
mantissa consists of determining the fraction 
field, adding the implicit normalized bit, and 
determining the value based on this number and 
the addition of exponents. The process becomes 
more complicated as more decimal digits are 
added to the floating-point number. 

1.0 

0.0 

-1.0 

0.75 

Below are some floating-point numbers and 
the values placed in the sign-bit, the biased 
exponent, and the mantissa. The floating-point 
libraries would then have to manipulate this final 
result 32-bit number. 

0 ObOlllllll Ob000000000.. 

0 Ob00000000 Ob000000000.. 

1 Ob01111111 Ob000000000.. 

0 ObOllllllO Ob100000000.. 

0.75 1 ObOOOOOO 

Fixed-point numbers used in software are 
declared with integral data types. These data 

Ob1 1 0x03 

types and their corresponding size are compiler 
and platform dependent. Using these fixed-point 
numbers allows the compiler to use machine 
instructions already built in to the microprocessor 
to manipulate the numbers. Cases where the 
programmer needs to manipulate numbers larger 
than the microprocessor size will cause the 
compiler to use libraries, much like the libraries 
used for floating-point manipulation. 

There are two popular ways to implement 
integer and fixed-point math. The first way is 
through the use of a radix point within an integer. 
This point marks the spot where bits to the right 
represent a fractional base-2 addition to the 
number on the left of the radix point. The first bit 
to the right of the radix point would represent 0.5 
(2-’), the second 0.25 (2-2), and so on. This way 
the programmer can represent fractional 
quantities but still use the built-in microprocessor 
math manipulation instructions. As the radix point 
is moved to the left, the fractional part increases 
but the min/max of the variable decreases. 
Shown below is an example layout of a 8-bit 
unsigned integer with a radix point that allows a 
resolution of 0.25 and a range of 0 - 63.75. 

MSB LSB 

I 
Fixed- 

Number /(left of radix) (right of radix) 8 Result - _ _  -I_ --_.I -. - 

I I 
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track of this scaling then remembers to divide by 
10 to get the final result after manipulation. This is 
a less desirable way to implement fixed-point 
math since it doesn’t allow the compiler to take 
advantage of bit-shifting for certain multiply and 
divide operations. 

Piatform Fixed-Point 
Size Compiler Time (elk) 

. 

In both implementation strategies for fixed- 
point math, the programmer must keep track of 
the radix point or the non base-2 scaling. It carries 
with i t  some added complexity since the 
programmer must now do extra operations to take 
care of scaling issues. These issues and ways to 
implement fixed-point operations will now be 
shown. 

Floating- 
Point Time 

(elk) ___ .. 

MOVING FROM FLOATING- TO FIXED-POINT 

8-bit 
8-bit 

32-bit 

32-bit 

The improvements in moving from floating- 
point to fixed-point will vary by compiler and 
platform. In order to see the increase in speed of 
execution, two different compilers for two different 
platforms were used. On an 8-bit platform, 
compiler A took 44 clock cycles to set up and 
multiply two 8-bit fixed-point numbers. It took 
compiler A 690 clock cycles to set up and multiply 
two floating-point numbers. On the same 8-bit 
platform, compiler B took 48 clock cycles to set up 
and multiply two 8-bit fixed-point numbers. It took 
compiler B 650 clock cycles to set up and multiply 
two floating-point numbers. On a 32-bit platform, 
compiler C took 65 clock cycles to set up and 
multiply two 32-bit fixed-point numbers. It took 
compiler C 95 clock cycles to set up and multiply 
two floating-point numbers. On the same 32-bit 
platform, compiler D took 72 clock cycles to set up 
and multiply two 32-bit fixed-point numbers. It 
took compiler D 112 clock cycles to set up and 
multiply two floating-point numbers. These results 
are summarized in the table below. 

A 44 690 
B 48 650 

C 65 95 

D 72 112 

As discussed in the previous section, with 
floating-point numbers you do not need to worry 
about the scaling (of the number. When floating- 
point numbers are multiplied, the compiler will 
multiply the numbers and take care of the 
mantissa, sign, and exponent for you. For fixed- 
point numbers, the programmer must keep track 
of the scaling of the numbers in order to use them. 
In order to see how scaling is taken care of, this 
section will walk through some examples and 
show what is needed for the floating-point and 
fixed-point cases. 

Consider the following formula with variables 
A, B, C, D: 

A = B + C - D 

When using floating-point to calculate the 
result, the type “float” is used in the software 
code. Each of these variables are declared with 
this type, and added together normally. The 
compiler automatically adjusts the variables to 
keep maximum accuracy while also preventing 
overflow. The following code segment shows how 
these floating-point numbers are manipulated. 

float A, B, C, D; 

A = B + C - D ;  

When using fixed-point to calculate the result, 
you must declare an integral type that matches 
the accuracy and range of each variable. Say for 
instance that variables B, C, and D each had a 
minimum of zero, a maximum of 300, and a 
required accuracy of 0.05. In order to determine 
the scaling of the number, scaling is equal to 1/ 
accuracy or greater. For this example the required 
scaling is at least ,20. When using addition and 
subtraction, it is mulch easier to manipulate fixed- 
point numbers when the scaling for the variables 
is the same, so variables A, B, C, and D will have 
a scaling of 20. 

In order to determine what size of integral type 
to declare, take the scaling and multiply by the 
range of the variable. For types B, C, and D, 
multiplying 20 by 300 yields 6000. For this 
example, B, C, and D will be declared as 16-bit 
unsigned integers. Since variable A is the result of 
the calculation, its range is determined by B, C, 
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and D. For a maximum value, A is equal to the 
maximum of B plus the maximum of C minus the 
minimum of D. For a minimum value, A is equal to 
the minimum of B plus the minimum of C minus 
the maximum of D. So A will have a minimum of - 
300, a maximum of 600, and keep the same 
accuracy requirements. Taking the scaling of type 
A and multiplying by the range, or multiplying 20 
by 900, yields 18000. For this example, A will be 
declared as a 16-bit signed integer. 

2.375 

2.375 * 16 = 
38 

1 

1 * 1 6 = 1 6  

Since the scaling for variables A, B, C, and D 
are the same, no special manipulation needs 
performed in the calculation. The following code 
segment shows how these fixed-point numbers 
are manipulated. ANSI C requires type casting 
the unsigned variables B, C, and D to yield a 
signed result. This type casting is not needed if all 
variables are declared as integers. 

4.4375 .03125 6.781 25 

4.4375 * 16 .03125 * 32 (38 + 71)*2 
= 71 = 1  - 1 = 217 

1 1 1 

1 * 1 6 = 1 6  1 * 3 2 = 3 2  (16+16)*2 
- 3 2 ~ 3 2  

unsigned int B, C, D; 
int A; 

A = (int)B + (int)C - (int)D 

For this example we could also declare the 
scaling to be 32. In this way, we could keep base- 
2 scaling which is preferred to help the compiler 
utilize bit-shifting instead of multiplies and divides, 
making the code faster. The code written above 
would not change in any way if you were to pick a 
scaling of 32 instead of 20, since the integral 
types would not change. The programmer will 
always need to remember the scaling used for the 
variables so whenever they are referenced or 
needed in the code, scaling issues can be 
handled. 

For the same example used above, lets say 
that the variables B, C, and D are already used in 
other places in the code. The scaling for B and C 
is 16, and the scaling of D is 32. Since they are 
used other places, it is too much of a mess to 
change what the scaling is without affecting other 
code locations. 16-bit unsigned integers were 
chosen as the integral types for these variables. 
Taking the minimum and maximum and 
multiplying by the scaling of each of the variables 
should be within the 16-bit unsigned integer 
boundaries. 

~ 

590 

Since the scaling of variables B, C, and D are 
different, they cannot be added normally. The 
radix point for the variables is in different places, 
so each of the bits in the integral type does not 
carry the same weight. In order to add and 
subtract these variables, they must have the 
same scaling. In order to keep as much accuracy 
as possible, adjust the lower scaling numbers 
(B,C) to the higher scaling numbers (D). The 
result (A) should maintain the higher scaling 
whenever possible. The code segment below 
shows the equation implemented with the 
different scalings for A, B, C, and D: 

unsigned int B, C, D; 
int A; 

A = (int)( B + C ) * 2 - D; 

The code segment above shows B and C 
being adjusted to a scaling from 16 to 32 by 
adding weight to the numbers. The table below 
shows the real values of B, C, and D, the software 
variable fixed-point values of B, C, and D, and the 
result of the calculation. 

Notice in the table above that the fixed-point 
A result is the scaling of A multiplied by the real A 
result. This is a good check to make sure that the 
calculation is written correctly. 

Consider the following formula with variables 
A, B, C, D: 

A = B * C / D  
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When using floating-point to calculate the 
result, the type “float” is again used in the 
software code. Each of these variables are 
declared with this type, and multiplied together 
normally. The compiler automatically adjusts the 
variables to keep maximum accuracy while also 
preventing overflow. The following code segment 
shows how these floating-point numbers are 
manipulated. 

float A, B, C, D; 

A = B * C/D;  

When using fixed-point to calculate the result, 
you must declare an integral type that matches 
the accuracy and range of each variable. Say for 
instance that variables B, C, and D each had a 
minimum of zero, a maximum of 400, and a 
required accuracy of 0.1. In order to determine 
the scaling of the number, scaling is equal to 1/ 
accuracy or greater. For this example the required 
scaling is at least 10. It is preferable to use base- 
2 numbers, so a scaling of 16 will be used, which 
is greater than the required 10. When using 
multiplication and division, it isn’t as important to 
try to keep the same scaling as it was with 
addition and subtraction. But keeping consistency 
will help with later calculations. 

In order to determine what size of integral type 
to declare, take the scaling and multiply by the 
range of the variable. For types B, C, and D, 
multiplying 16 by 400 yields 6400. For this 
example, B, C, and D will be declared as 16-bit 
unsigned integers. Since variable A is the result of 
the calculation, its range is determined by B, C, 
and D. For a maximum value, A is equal to the 
maximum of B multiplied by the maximum of C 
divided by the minimum of D. For a minimum 
value, A is equal to the minimum of B multiplied 
by the minimum of C divided by the maximum of 
D. So A will have a minimum of 0 and a maximum 
of 40,960,000, as long as D is not equal to zero. 
Whenever numbers are multiplied in an equation, 
the accuracy of the result increases. Whenever 
they are divided, the accuracy of the result 
decreases. When using multiplication and 
division, it is important to determine what the 
required accuracy is before laying out the 
equation. For this example, let’s keep the 

accuracy at 16. Taking the scaling of type A and 
multiplying by the range, or multiplying 16 by 
40,960,000, yields 655,360,000. For this 
example, A will be declared as a 32-bit unsigned 
integer. 

Since we are rnultiplying and dividing, the 
scalings of the fixed-point numbers interfere in the 
result of the calculation. The scaling of the final 
result A is equal to the scaling of B times the 
scaling of C divided by the scaling of D. This 
comes out to be 16, which is what we require. So 
scaling does not interfere in the calculation. 

unsigned int B, c, D; 
unsigned long1 int A; 

if ( D  != 0 )  
A = (unsigned long int)B * 

(unsigned long int)C / 
(unsigned long int)D; 

For the same example used above, lets say 
that the variables B, IS, and D are already used in 
other places in the code. The scaling for 6 and C 
is 16, and the scaling of D is 8. Since they are 
used other places, it is too much of a mess to 
change what the scalling is without affecting other 
code locations. 16-bit unsigned integers were 
chosen as the integral types for these variables. 
Taking the minimum and maximum and 
multiplying by the scaling of each of the variables 
should still be within the 32-bit unsigned integer 
boundaries. 

For this example,, since D only has an scaling 
of 8, we will choose the scaling of A to also be 8. 
The scaling of the final result A without 
manipulation is the scaling of B (16) times the 
scaling of C (16) divided by the scaling of D (8), 
which yields 32. In order to get A to have a scaling 
of 8, we must divide the result by 4 (32/4 = 8). The 
code segment below shows the equation 
implemented with the different scalings for A, 6, 
C, and D: 

unsigned int B, C, D; 
unsigned long inlt A; 

A = (unsigned long int)B * 

(unsigned long int)C / 
(unsigned long int)D / 4; 
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The code segment above shows the equation 
adjusted by 4 to get A to the proper scaling. The 
table below shows the real values of B, C, and D, 
the software variable fixed-point values of 6, C, 
and D, and the result of the calculation. 

2.375 

2.375 * 16 = 
38 

1 

1 * 16 = 16 

4.4375 

4.4375 * 16 
= 71 

1 

1 * 1 6 = 1 6  

1.25 

1.25 * 8 = 
10 

1 

1 * 8 = 8  

8.43125 

38 * 71 / 10 
/ 4 = 6 7  

1 
16 * 16/ 8 / 
4 = 8  

Notice in the table above that the fixed-point 
A result is the scaling of A multiplied by the real A 
result. This is a good check to make sure that the 
calculation is written correctly. 

FIXED-POINT IMPLEMENTATIONS 

Now that the basis for fixed-point and the 
improvements using fixed-point have been 
covered, this section wil l show different 
implementations of fixed-point and how to deal 
with special cases. It will also show some 
examples of things to watch out for when 
implementing fixed-point math equations. 

As mentioned in the previous section, 
wherever base-2 fixed-point constants are used, 
the compiler may substitute the operations with 
left- and right-shift operations. This is one of the 
added benefits of using fixed-point math. Below is 
an example where bit shifting is used in place of a 
machine divide. 

Code: 
static unsigned char j, k, n; 

static void example( void ) 
{ 

j = k * n / 2; 
1 

Assembler Output: 
ldab n ; places n in register 
ldaa k ; places k in register 
mu1 ; performs machine multiply 
lsrb 
stab j 
rtS 

; bit shift 1 to right (/2) 

It is also important to remember that 
whenever a fixed-point divide is used, the 
resulting decimal digits from the divide are 
chopped off. This can cause inaccuracies in your 
calculation. In order to keep as much accuracy as 
possible, multiply in the equation first then divide. 
In the example A = B * C / D, multiply B and C first 
then divide by D. If the scaling needs adjusted in 
the equation by multiplying, then adjust the 
scaling first before dividing. 

If B and C have a scaling of 4, and D has a 
scaling of 16, and we wish A to have a scaling of 
4, we need to multiply the equation by 4 to adjust 
the scaling. Remember, this is calculated by 
taking the scaling of B (4), multiplying by the 
scaling of C (4), and dividing by the scaling of D 
(16), which comes out to 1. We want A to have a 
scaling of 4,  so we need to multiply by 4. 
Multiplying is done first, then dividing in the code 
segment below. 

unsigned int B, C, D; 
unsigned long int A; 

i f (D !=O)  
A = (unsigned long int)B * 

(unsigned long int)C * 
4 / (unsigned long int)D; 

592 

When adding and multiplying In the same 
equation, the scaling becomes even more 
confusing. Remember when adding or 
subtracting, the scaling of the two variables must 
be the same. Remember when multiplying, the 
scaling of the result will be equal to the 
multiplication of the two scale factors. Remember 
when dividing, the scaling of the result will be 
equal to the division of the two scale factors. To 
come up with an example of having to address 
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many scaling issues, consider the following 
variables without worrying about ranges. B has a 
scaling of 8, C has a scaling of 4, and D has a 
scaling of 16. The result A needs to have a 
scaling of 8. The equation A = (B + C) * D will be 
used. 

unsigned int B, c, D; 
unsigned long int A; 

A = ( (unsigned long int)B + 
( (unsigned long int)C * 2 ) ) * 
(unsigned long int)D 
116; 

In the code segment above, the multiplication 
by 2 adjusts C to have the same scaling as B (8) 
so they can be added together. This result is then 
multiplied by D. The last step is to divide the result 
by 16 so it can have the correct units for A. Again, 
make sure the scaling is the same before adding, 
and adjust the scaling as needed after multiplying 
and dividing. 

When using fixed-point math, minimize the 
number of different scale factors as much as 
possible. This can be achieved by always using a 
standard scaling for types of parameters. For 
instance, whenever engine speed is used in the 
code, use a fixed scaling such as 4. Having an 
accuracy of 1/4 RPM wherever it is used in the 
code will help keep consistency and minimize 
extra manipulation in the calculations. When 
comparing engine speed to limits or other engine 
speed values, regular calculations can be made. 
Keep common scale factors in a header file group 
together, wherever it is appropriate. 

Avoid using “magic numbers’’ as well. The 
values “2” and “1 6 in the code above come from 
fixed numbers. The “2” could actually be a #define 
that is defined as the scaling of B divided by the 
scaling of C. The same could be done for “16”. In 
this way, if someone decides to change the 
scaling of one of the variables, it is less work to 
change it, since the equations that use this 
variable will automatically adjust when re- 
compiled. Ranges should still be checked to 
make sure there are no overflow problems. 

Don’t forget when multiplying fixed-point 
numbers, to cast the variables when necessary. 
The compiler normally interprets the result size of 
the calculation to be whatever size that is being 
used to calculate it. When multiplying 16-bit 
numbers and placing in a 32-bit result, you must 
cast the 16-bit number to  32-bit before 
multiplying. 

CONCLUSIONS 

Whether or not to use fixed-point math instead 
of floating-point emulation should be decided 
based on execution speed and memory 
constraints. As shown in  the examples, 
implementing fixed-point math can be tricky. The 
scaling of the fixed-point numbers must 
constantly be consiidered, otherwise using them 
in multiplication can yield incorrect results. 

Make sure when implementing fixed-point 
math that your calculations are double-checked. 
This can easily be? done by making up some 
floating-point numbers and calculating what the 
result should be. Then convert these numbers to 
their fixed-point counterparts, and plug into the 
equation. Calculate the number as written in the 
code with a calculator, and chop off any decimal 
places after any divide or shift operation. Once 
the final fixed-point result is found, divide by the 
scaling of the result to make sure it is equal to the 
expected result. 

The suggestions and ideas presented in this 
paper should be tried out on your particular 
platform and compiler. It is important to measure 
the percent improvement in moving from floating- 
point emulation to fixed-point to quantify the 
change. I f  there is  a large measured 
improvement, the payoffs in execution time, RAM, 
and fixed-memory are right around the comer. 
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