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ABSTRACT 
A floating-point to integer C program translator is developed for 
convenient programming and efficient use of fixed-point 
programmable digital signal processors (DSP’s). It not only 
converts data types and supports automatic scaling, but also 
conducts shift optimization to enhance execution speed. Since 
the input and output of this translator are ANSI C compliant 
programs, it can be used for any fixed-point DSP that supports 
ANSI C compiler. A shift reduction method is developed for 
minimizing the scaling overhead of translated integer C 
programs. It considers the data-path of a target processor and 
profiling results. Using the shift reduction method, 4% to 37 % 
speedup is obtained. The translated integer C codes are 20 to 
400 times faster than the floating-point versions when applied to 
TMS320C50, TMS320C60 and Motorola 56000 DSP’s. 

1. INTRODUCTION 

Although the use of high-level languages for programmable 
digital signal processors is important in reducing the 
development time and retaining the portability, C compilers for 
fixed-point digital signal processors have met with little 
acceptance, especially because of the overhead of executing 
floating-point operations using a fixed-point data-path [I]. The 
development of fixed-point programs is considered tedious and 
difficult because it requires appropriate scaling for each data 
move and arithmetic operation to prevent overflows while 
maintaining accuracy [2][3]. The converter developed in this 
work, Autoscaler for C, can solve these problems because not 
only does it allow a programmer to avoid time-consuming 
assembly coding and manual scaling but also the translated C 
programs are executed very efficiently in fixed-point digital 
signal processors. 

There are several recent research works for the automatic scaling 
and fixed-point implementation of general digital signal 
processing algorithms, such as the autoscaling assembler for 
TMS320C25 (‘C25) [2][3], the fixed-point optimization utility 
for C and C++ based digital signal processing programs [4]-[6], 
the fixed-point C compilers for TMS320C50 (‘C50) [7]. These 
tools still require assembly coding or source code modification 
because they do not support ANSI C language. However the 
developed Autoscaler for C accepts ANSI C based floating-point 
application programs, and generates ANSI C compliant programs 
including target specific codes. It also performs target dependent 
scaling shift minimization. 

Figure 1 shows the design flow using the Autoscaler for C.  First, 
the ranges of floating point variables are estimated by the 

simulation of the range estimation program that is automatically 
generated from the original floating-point version. The integer 
word-lengths, which are the number of bits used for the integer 
part, of the fixed-point variables are initially determined using 
the range estimation results. Second, the integer word-length of 
each variable is optimized to minimize the number of scaling 
shift operations using a data-path specific cost function. The 
simulated annealing algorithm is used for this shift-reduction. 
Finally, the floating-point variables and constants are replaced by 
the corresponding integer types, and appropriate scaling codes 
are inserted. The SUIF (Stanford University Intermediate 
Format) compiler system is used for source program parsing, 
analyzing, converting and generating the target programs [8]. 

Shift reduction 

Figure 1. The floating-point to integer C converter design flow. 

2. SIMULATION-BASED INTEGER 
WORD-LENGTH DETERMINATION 

The fixed-point data format employed for this translator consists 
of sign, integer and fractional bits. The number of bits assigned 
to the integer is called the integer word-length (IWL), and that 
assigned to the fraction is the fractional word-length (FWL). 
Thus, the word-length (WL) corresponds to IWL+FwL+I. The 
range (R) and the quantization step (Q) are dependent on the 
IWL and FWL, respectively: -2IWL 5 R c 2“ and Q = 2.- 

ssigning a large IWL to a variable can prevent 
overflows, but it increases the quantization noise. Thus, the 
minimum IWL for a variable x, 1 m h ( x ) ,  can be determined 
according to its range, R(x), as follows. 

=2-(wL- I-IwL) A . 

IWL,,,,, ( x )  = rlog, ~(~) i  (1) 
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where r.1 denotes the smallest integer which is equal to or 

greater than x. A simulation based range estimation method was 
developed, where the range of each signal is measured during the 
floating-point simulation using realistic input signal files [4][5]. 
It employs the C++ class that traces the statistic information. It 
can be used for most algorithms described with C or C++ by 
simply replacing the float types with the range estimating C++ 
class. However, it cannot be applied to programs that have 
recursive functions, because the C++ class should be statically 
declared for collecting the statistical information, while the local 
variables in recursive functions are automatically declared and 
reside in stack frames [9]. Instead of the C++ class based method, 
a range estimation approach that uses a function call is employed 
for this study. It modifies the original C program by inserting a 
function call after every assignment statement. In this function, 
range(), the maximum absolute value, the sum, the squared sum 
and the number of assignments of a variable are traced. The 
function call insertion method is not only applicable to programs 
having recursive function calls, but also about 2.7 times faster 
than our previous C++ class based range estimation method as 
compared in Table 1 .  The execution time was measured using a 
Sun Ultra 1 workstation. 

Program original C++ based 

estimation 
C code range 

IIR 1 0.22s 4.95s 

C based 
range 
estimation 
1.88s 

(1ooo000 samples) I 
IIR4 I 1.03s 1 25.99s I 9.59s 

floating- 

x = y  
point 

fixed-point result 
Ix>Iy,Iz I Iy>Ix,Iz I I7Ax,Iy IWL 
x =  X =  I -  Ix 

X+Y 

The range estimation code is automatically generated as follows. 
First, it finds all of the floating-point variables by examining the 
symbol tables of the source program, and assigns a unique 
identification number to each floating-point variable. The 
identification numbers are attached to the corresponding 
variables in the symbol tables using the annotation function of 
the SUIF. Second, it traverses all of the expression trees and 
inserts the range() function call after every floating-point 
assignment. The range estimating program has a table that stores 
the maximum absolute value, the sum, the squared sum and the 
number of assignment of all the floating-point variables. In the 
function range(), the table elements indexed by the identification 
number are modified with the assigned value. The statistics are 
reported when program execution is completed. 

y>>(Ix-Iy) y<<(Iy-Ix) 

(Y>>(h-lY)) W + Y  (y>>(Iz-Iy)) Iy,Iz) 
X+ (x>>(ly- (x>>(lz-Ix))+ max(Ix, 

3. CODE CONVERSION 

X*Y 

Arithmetic and assignment operations for fixed-point variables or 
constants need scaling operations [2][3]. For example, a variable 
x having an IWL of 2 cannot be added directly to a variable y 
with an IWL of 1. The variable y should be shifted right by 1 bit 
before addition to align the binary-point. Note that the IWL of a 
variable is increased by the arithmetic right shift operation. If the 
IWL of the added result is greater than both IWL’s of two input 
operands, the inputs should be scaled down to prevent overflows. 
Therefore, the scaling for addition is performed as shown in 
Table 2. 

mulh(x,y) Ix+Iy+ 1 
or Jx+ly 

For fixed-point multiplication, it is important for preventing 
overtlows to keep the upper part of the double precision 
multiplied result although integer multiplication in ANSI C only 
stores the lower part [7]. Since two’s complement multiplication 
generates two sign bits, the IWL of the multiplied result becomes 
Ix + Iy +1, where Ix and Iy are the IWL’s of two input operands x 
and y, respectively. In traditional C compilers, double precision 
multiplication followed by a double to single conversion is 
needed to obtain the upper part, which is obviously very 
inefficient [l]. However, in recent C compilers for some digital 
signal processors such as ’C50, the upper part of the multiplied 
result can be obtained by combining multiply and shift 
operations [lo]. In the case of TMS320C60 (%60), which has 
32-bit registers and ALU’s, but only 16 by 16-bit multipliers, the 
multiplication of the upper 16-bit of two 32-bit operands is 
efficiently supported by C intrinsics [ 113. If there is no support 
for obtaining the upper part of the multiplied result in the C 
compiler level, an assembly level implementation of fixed-point 
multiplication is required. For Motorola 56000 processor, fixed- 
point multiplication can be implemented with a single instruction 
using inline assembly coding [12]. The implementation of the 
macro or inline function for fixed-point multiplication, mulh(), is 
dependent on the compiler of a target processor. 
Table 2. Fixed-point arithmetic rules. 

QCELP I 8.58s I 45.73s 

4. SHIFT REDUCTION 

Since a scaling is not needed for addition or assignment of 
operands having the same IWL, the number of scaling shifts can 
be reduced by equalizing the IWL’s of relevant variables. Note 
that it is only allowed to increase the initial IWL’s that are 
determined according to Eq. (1). Shift reduction requires global 
optimization since the IWL modification of a variable in an 
expression can incur more scaling shifts in other expressions. 
Shift optimization also depends on the architecture of the target 
DSP. If it has a barrel shifter, the number of shift bits does not 
affect the cycle time. However, if it has no barrel shifter and 
should conduct the scaling using one-bit shift operations, the 
shift overhead is also affected by the number of bits for a scaling 
operation. It is also needed for minimizing the execution time to 
reduce the scaling operations that are inside a long loop. Thus, 
this optimization requires program-profiling results. 
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The IWL modification that minimizes the overhead for scaling is 
conducted as follows. First, the number of shift bits for each 
expression is formulated with the IWL’s of the relevant variables 
and constants. Second, the cost function that corresponds to the 
total overhead of scaling shifts is made based on the results of the 
first step, the target DSP architecture and the program-profiling 
information. Finally, the cost function is minimized by 
modifying the IWL’s using the simulated annealing algorithms. 

For a simple modeling, a floating-point expression is converted 
to several simple expressions having following form. 

i.k I 

This expression will be converted to an integer expression with 
scaling shift insertion as follows. 

j.x I 

The shift amounts, si,k, sI and si are determined as follows. 

I,, = y y L j  + I, + 1 7  I ,  7 1 , )  (4) 

si = I, - I ,  7 (7) 

where I, is the IWL of the variable x and Irk is the IWL of the 
right hand side expression. 

For a DSP architecture without a barrel shifter such as Motorola 
56000, total number of bits for shift operation is the overhead of 
scaling shifts. It is determined as: 

where eid is the shift amount for the j-th term of the i-th 
expression, di is that for the assignment of the i-th expression and 
ni is the number of execution counts of the i-th expression. The 
weight, ni, is determined from the profiling results. For a DSP 
having barrel shifters, such as ‘C25, ’C50 and ‘C60, the number of 
scaling shift operations that are not zero is counted. The cost 
function is represented as follows. 

(9) 

where fB(x) is zero when x is zero, and is one when otherwise. 
This means that no shift is needed when the number of shift bits 
is zero, and only one shift operation is needed when that is not 
zero. 

The cost functions shown in Eq. (8) and (9) are minimized by 
modifying the IWL’s with the following constraints. The first 
constraint is the IWL lower bound, which is determined by the 
range estimation. The second constraint is the IWL upper bound, 
which is required for avoiding a significant performance 
degradation. The third constraint is the IWL equality condition of 
pointer and array variables. As explained before, the variables 
sharing the same pointer should have the equal IWL. When a 
function has pointer or array variables in its parameters, the 

variables in the caller side and the callee side should have the 
same IWL also. The cost functions can be minimized using 
general optimization methods such as the simulated annealing 
algorithm [ 131. 

Shift optimizer reads the IWL information file generated in the 
range estimation step, and writes back the optimized IWL 
information after minimizing the number of shifts. The 
implementation of the shift reduction program consists of three 
parts: source code profiling, syntax analysis and shift optimizing. 
The source code profiling collects the execution frequencies of 
floating-point expressions throughout the simulation of the 
profiling program that is automatically generated. The syntax 
analyzing part extracts the equations for the calculations of scale 
amounts and the IWL equality condition by analyzing the 
floating-point C program. The extracted information includes the 
simplified parse tree for floating-point expressions and the IWL 
equality constraints. The shift optimizer part generates a C 
program conducting the simulated annealing optimization with 
the syntax analysis results, the profiling results, and the initial 
IWL’S. 

5. IMPLEMENTATION EXAMPLES 

5.1 Fourth order IIR filter 

A part of the floating-point C code and the converted integer C 
code for this example are shown in Fig. 2. 

xl = 0.01’ * x ;  
tl = xl + bltOl*dl[Ol + bl[ll*dltl]; 
yl = al[O]*tl + al[l]*d1[01 + al[2l*dl[ll; 

(a) The floating-point C code. 

xl = mulh(1374389534, *x)<<l; 
tl=((xl>>5)+mulh(*bl,*dl)+mulh(bltll,d1[ll))<<2; 
yl= (mulh(*al, tl) +mulh(al [ 11, *dl) + 

mulh(al[2Irdltl]))~<l; 
(b) The integer C code before shift reduction. 

xl=mulh(1374389534,*x); 
tl=(xl+mulh(*bl,*dl)+mulh(bl[lIrdl[l]))<<2; 
yl=mulh(*al, tl) +mulh(al [l] , *dl) + 

mulh(alt21 ,dltll); 
(c) The integer C code after shift reduction. 

Figure 2. The C codes for the fourth order IIR filter. 

Note that the floating-point constant of 0.01 is converted to 32 
bit integer constant of 1374389534 with IWL of -6. The IWL’s 
of the variable x, XI,  t l ,  d l ,  a l ,  b l ,  and y l  are determined as 16, 
9, 12, 12, 1, 1, and 13, respectively by the simulation based range 
estimation. The integer C code generated using these IWL’s is 
shown in Fig. 2-(b). In this example, the speedup, which is the 
ratio in the execution time of the integer to the floating-point 
versions, was 29.8, 406, and 28.5 for ‘C50, ‘C60, and Motorola 
56000, respectively, as shown in Table 3. The remarkable 
speedup of IC60 is mainly due to the deeply pipelined VLIW 
architecture having a large register file and the efficient C 
compiler. This machine can execute up to 8 integer operations in 
one cycle and store all the variables of a small loop kernel in the 
registers, but needs a large number of no-operation cycles for 
floating-point function calls to flush the pipeline registers. 
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# of cycles SQNR 

floating-p. integer speedup integer 

IC50 2,980 100 29.8 49.3dB 

IC60 3,659 9 406.6 57.9dB 

56000 26,282 921 28.5 78.5dB 

Table 4. The shift reduction results of the fourth order IIR filter. 

before 
shift reduction 

after 
shift reduction 

# of shifts in C codes I 7 1 2  
’CSO I # of cycles I 100 I 94 

’C60 

speedup 6% 
SQNR 49.3dB 54.1dB 
#ofcycles 9 6 
speedup 133% 

5.2 QCELP Codec 

The QCELP algorithm developed by Qualcomm [I41 is 
implemented using TI’s ‘C60. This C program consists of 16 
source and 4 header files having a total of 3648 lines. It has 381 
floating-point variables including arrays and pointers. The 
system performance is measured by the SQNR of the input and 
the reconstructed speech signal samples. The simulation result 
shows 17.9 dB in the floating-point C version, and 17.36 dB in 
the fixed-point C version without shift reduction. The floating- 
point version requires about 27.1 million cycles for each 20 ms 
speech frame, while the converted integer version consumes only 
1.1 million cycles, which shows that the integer version is 24.6 
times faster than the floating-point version. According to the 
shifter reduction result, the shifter cost is reduced by 88%, and 
the program becomes 4.5% faster with only 0.1 dB performance 
degradation. 

# of shifts in C codes 
56000 #ofcycles 

speedup 
S Q M  

6. CONCLUDING REMARKS 

5 2 
921 577 

37% 
78.5dB 78.5dB 

The developed converter reads ANSI C programs without 
requiring any modification of the source codes, and generates 
ANSI C compliant scaled integer versions that are optimized for 
target processor architectures including TI’s ‘C50, IC60 and 
Motorola’s 56000 series. The converter consists of three parts, 
which are range estimation, shift reduction and code conversion 
modules. The SUIF compiler system is extensively used for the 
implementation of these modules. The simulated annealing 

method is used for the optimization of the number of shifts for 
scaling. 

A fourth order IIR filter and the QCELP codec are implemented 
using the Autoscaler for C. The translated integer C versions are 
20 to 400 times faster than floating-point C codes. For the fourth 
order IIR filter example, 71% of scaling shifts are removed and 
6% to 37% of speedup is achieved according to the target 
processor architectures. The translator also reduces the 
quantization noise by keeping the upper part of the multiplied 
results and employing the simulation based optimum scaling 
method. For the fourth order IIR filter example, 49.3 to 78.5dB 
SQNR is obtained according to the word-length of a target 
processor. The total conversion time for the QCELP codec is less 
than 30 minutes because of the high level language based 
simulation for the range estimation and profiling. 
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