Codificación para los sistemas de comunicaciones

(Coding and Modulation for Wireless Networks)

Robert H. Morelos-Zaragoza Department of Electrical Engineering San José State University

> Dia de Procesamiento de Señales Facultad de Ingeniería de la UNAM October 27, 2015

Outline

- Introduction: A simple two-path wireless channel
 - Flat and frequency selective fading
 - Fast and slow fading
- Diversity techniques for wireless channels
- IEEE 802 wireless network (PHY) standards
 - Bit-interleaved coded modulation
 - Modulations and codes used today

A wireless two-path channel

Figure 1: A wireless two-path channel.

Wireless two-path channel response to rectangular pulses

PSD of a wireless two-path channel

Fading and time variations

• Variations in received power due to movement (Doppler):

Multipath effects

- Reflections (paths) of the transmitted electromagnetic signal on objects
- *L*-path channel impulse response:

Coherence bandwidth:

Phase rotation:

$$\phi_i(t) = 2\pi f_c \tau_i(t)$$

Basic types of fading

• Flat fading:

$$B \ll B_c$$
 or $2W \ll \frac{1}{T_m}$

- Narrowband signaling B=2W is the signal bandwidth
- Frequency-selective fading:

$$B >> B_c$$
 or $2W >> \frac{1}{T_m}$

- Wideband signaling

Complex baseband frequency-selective multipath channel model

Time diversity for multipath channels

Time-diversity techniques

- Time-diversity techniques can be classified according to the frequency selectivity of the multipath channel
- Flat fading channels
 - Error correcting coding & interleaving
 - Diversity order equal to the *minimum Hamming distance* of the code
- Frequency-selective channels
 - **RAKE** demodulation
 - Linear adaptive equalization

Flat Rayleigh fading: ECC diversity with a Hamming (7,4,3) code

12

RAKE demodulator: Assumptions

- Slow fading: $T \ll T_c \implies c_i(t) = c_i, i = 0, \dots, L-1$
- Frequency-selective fading: $W >> B_c$ (1)
- <u>No intersymbol interference (ISI</u>: $T >> T_m$ (2)
- (1) and (2) are satisfied by *wideband pulses*, such as PPM or spread-spectrum
- Path gains and delays need to be known
 - Need channel estimation techniques ("finger search")

RAKE demodulator: Structure (BPSK)

Maximal-ratio combining property

Frequency diversity for frequencyselective multipath channels: OFDM

Frequency-domain approach

• <u>Divide and conquer</u>: Create K *subchannels* with frequency responses that are relatively constant (flat):

• Subcarrier frequencies:

$$f_k = f_c - \frac{K-1}{2T} + \frac{k}{T}, \quad k = 0, 1, \dots, K-1.$$

Complex baseband spectrum

- Each baseband channel has an associated basis signal $\psi_{k}(t) = e^{j\left(2\pi \frac{k}{T}t\right)}, \quad k = 0, 1, \dots, K-1.$
- Frequency separation and symbol duration (sinc pulses):

$$\Delta f = \frac{W}{K}, \quad T = \frac{1}{\Delta f} = \frac{K}{W}$$

• Symbol duration is proportional to K

OFDM signal

- A large value of K results in T >> T_m and fading becomes *flat*
 - Constant subchannel gains:

$$C\left(2\pi\frac{k}{T}\right) = C_k = A_k e^{j\phi_k}, \quad k = 0, 1, \cdots, K-1.$$

• Each subcarrier is typically M-QAM mapped so that the signal transmitted over each subchannel is:

$$u_k(t) = \sqrt{\frac{2}{T}} S_{Ik} \cos\left(2\pi \frac{k}{T}t\right) + j\sqrt{\frac{2}{T}} S_{Qk} \sin\left(2\pi \frac{k}{T}t\right), \ 0 \le t \le T,$$

where $S_k = S_{lk} + jS_{Qk}$ represent the modulation symbols.

• Complex baseband OFDM signal: $s(t) = \sum_{k=1}^{n-1} u_k(t)$

OFDM receiver processing

• For each subchannel, *k*=0,1, ..., *K*-1, the *received signal* is

$$r_{k}(t) = \sqrt{\frac{2}{T}} A_{k} S_{k1} \cos\left(2\pi \frac{k}{T}t + \phi_{k}\right) + j\sqrt{\frac{2}{T}} A_{k} S_{k2} \sin\left(2\pi \frac{k}{T}t + \phi_{k}\right) + N_{k}(t), \ 0 \le t \le T,$$

$$AWGN$$

with A_k the amplitude response and ϕ_k the phase response.

Basis functions:

$$\psi_{k1}(t) = \sqrt{\frac{2}{T}} \cos\left(2\pi \frac{k}{T}t\right), \quad \psi_{k2}(t) = \sqrt{\frac{2}{T}} \sin\left(2\pi \frac{k}{T}t\right), \quad 0 \le t \le T.$$

• Corresponding *matched filter outputs*:

$$Y_{k1} = A_k \cos(\phi_k) \cdot S_{k1} + W_{k1}, \quad Y_{k2} = A_k \sin(\phi_k) \cdot S_{k2} + W_{k2}, \text{ or}$$
$$Y_k = C_k S_k + W_k, \quad \text{as a complex number.}$$

One-tap equalization

- The receiver estimates the subchannel gains using *pilot symbols* known to both transmitter and receiver
- Based on these estimates C_k, the scaling of the transmitted symbols is removed by a process known in the literature as "one-tap equalization":

$$Y_{k}' = \frac{\hat{C}_{k}^{*}}{\left|\hat{C}_{k}\right|^{2}} Y_{k} = \frac{\hat{C}_{k}^{*}}{\left|\hat{C}_{k}\right|^{2}} \left(C_{k}S_{k} + W_{k}\right) \approx S_{k} + W_{k}', \quad k = 0, 1, \cdots, K-1$$

ISI removal

- Effects of delay spread T_m can be removed using a *prefix*
- Two choices

• The choice of a cyclic prefix offers the additional advantage that the *discrete Fourier transform* (implemented via the FFT algorithm) can be used

OFDM transmitter

 \overline{x} : Vector of K signal samples

OFDM receiver

 \overline{r} : Vector of *K* received signal samples EQ : Array of *K* one-tap equalizers

Error floors in OFDM

Subchannels (say K_b out of K) with high attenuation (low amplitude A_k) will experience large number of errors (≈1/2)

- Solution (e.g., all IEEE 802.11 physical layer specifications):
 - Scramble the symbols: *Interleaving*
 - Use error correcting coding

Time-Frequency Interleaving

Goal: Spread those subchannel symbols affected by frequency nulls (low energy) in channel response

Error Control Coding (ECC)

Correct errors in symbols with low energy

Coding and Modulation in IEEE 802 Wireless Network Standards

Bit-interleaved coded modulation

- Gray mapping of bits to modulation symbols
- Demapping to produce *binary metrics (LLR values)*
- Practically all IEEE 802 standards use it

IEEE 802.11-2012

IEEE 802.11-2012: Constellations (1)

IEEE 802.11-2012: Constellations (2)

64-QAM $b_0b_1b_2b_3b_4b_5$ Q 000 100 001 100 011 100 010 100 110 100 111 100 101 100 100 100 000 101 001 101 011 101 010 101 110 101 111 101 101 101 100 101000 111 100 111 000 110 001 110 011 110 010 110 110 111 110 101 110 100 110 000 010 001 010 011 010 010 010 110 010 111 010 101 010 100 010 001 011 011 011 010 011 110 011 111 011 101 011000 011 100 011 001 001 011 001 010 001 110 001 111 001 000 001 101 001 100 001 001 000 011 000 010 000 110 000 101 000 100 000 000_000 111 000

IEEE 802.11-2012: OFDM and Rates

Table 17-3—Modulation-dependent parameters

Modulation	Coding rate (R)	Coded bits per subcarrier (N _{BPSC})	Coded bits per OFDM symbol (N _{CBPS})	Data bits per OFDM symbol (N _{DBPS})	Data rate (Mb/s) (20 MHz channel spacing)	Data rate (Mb/s) (10 MHz channel spacing)	Data rate (Mb/s) (5 MHz channel spacing)
BPSK	1/2	1	48	24	6	3	1.5
BPSK	3/4	1	48	36	9	4.5	2.25
QPSK	1/2	2	96	48	12	6	3
QPSK	3/4	2	96	72	18	9	4.5
16-QAM	1/2	4	192	96	24	12	6
16-QAM	3/4	4	192	144	36	18	9
64-QAM	2/3	6	288	192	48	24	12
64-QAM	3/4	6	288	216	54	27	13.5

Permutation	$\langle \rangle$	0 1		. T	. 1	10																			7
matrix 🔨	(a)	Cod	ing r	ate F	(= 1	/2.			_				_	_	_										
	0		-	-	0	0	-	-	0	-	-	()	1	0 -		-	-	-	-	-	-	-	-	
	22		-	_	10	_	0	0	12	_	-	-	_	_	- 0) –) 0	_	-	_	_	_	_	_	_	
	2	_	-	0	20	_	_	_	24	0	-	_	_	_		- 0	0	_	_	_	_	_	_	_	
	23	_	_	-	20	_	_	_	20	-	9	11	1	_			0	0	_	_	_	_	_	_	
	24	-	23	1	17	_	3	-	10	-	-		-	-			-	0	0	_	_	_	_	_	
	25	-	-	-	8	-	-	-	7	18	-	-	-	0			-	-	0	0	-	-	-	-	
	13	24	-	-	0	-	8	-	6	-	-	-	-	-			-	-	-	0	0	-	-	-	
	7	20	-	16	22	10	-	-	23	-	-	-	-	-			-	-	-	-	0	0	-	-	
	11	-	-	-	19	-	-	-	13	-	3	17	7	-			-	-	-	-	-	0	0	-	
	25	-	8	-	23	18	-	14	9	-	-	-	-	-			-	-	-	-	-	-	0	0	
	3	-	-	-	16	-	-	2	25	5	-	-	-	1			-	-	-	-	-	-	-	0	
	(b)	Cod	ing r	ate F	R = 2	2/3.																			
	25	26	14	_	20	_	2	-	4	-	-	8	-		16	-	18	1	0 -	-			-		Matrices de
	10	9	15	11	-	0	-	1	-	-	18	-	8	3	-	10	-	-	0 0	-			-		paridad
	16	2	20	26	21	-	6	-	1	26	-	7	-	-	-	-	-	-	- 0	0			-		panuau
	10	13	5	0	-	3	-	7	-	-	26	-	-		13	-	16	-		0	0		-		
	23	14	24	-	12	-	19	-	17	-	-	-	2	20	-	21	-	0		-	0 (0 -	-		
	6	22	9	20	-	25	-	17	-	8	-	1	4 -		18	-	-	-		-	- (0 0	-		
	14	23	21	11	20	-	24	-	18	- 1	19	-	-		-	-	22	-		-		- 0	0		
	17	11	11	20	-	21	-	26	-	3	-	-		.8	-	26	-	1		-			0		_
	(c)	Cod	ing r	ate F	R = 3	/4.																			
	16	17	22	24	9	3	14	-	4	2	7	-	26	5	-	2	-	21	-		1 0	-			
	25	12	12	3	3	26	6	21	-	15	22	-	15	5	-	4	-	-	16		- 0	0			
	25	18	26	16	22	23	9	-	0	-	4	-	4	Ł	-	8	23	11	-			0	0		
	9	7	0	1	17	-	-	7	3	-	3	23	-	• 1	6	-	-	21	-		0 -	-	0 (D -	
	24	5	26	7	1	-	-	15	24	15	-	8	-	• 1	13	-	13	-	11			-	- (0 0	
	2	2	19	14	24	1	15	19	-	21	-	2	-	- 2	24	-	3	-	2		1 -	-		- 0	_
	(d)	Cod	ing r	ate F	R = 5	5/6.																			
	17	13	8	21	9	3	18	12	10	0	4 1	L5	19	2	5	10	26	19	9 13	3	13	1	0		
	3	12	11	14	11	25	5	18	0	9	2 2	26	26	10	24	7	14	2	0	4	2	-	0	0 -	
	22	16	4	3	10	21	12	5	21	14	19	5	-	8	5	18	11	Ę	5 !	5	15	0	- (0 0	
	7	7	14	14	4	16	16	24	24	10	1	7	15	6	10	26	8	18	3 2	1	14	1	-	- 0	

Table F-1—Matrix prototypes for codeword block length n=648 bits, subblock size is Z = 27 bits

Coding and Modulation for Wireless

9

Permutation matrix example

• Z=27, p=22

(a)	Cod	ing r	ate F	R = 1	/2.																	
40	-	-	-	22	-	49	23	43	-	-	-	1	0			-	-	-	-	-	-	-
50	1	-	-	48	35	-	-	13	-	30	-	-	0	0 ·		-	-	-	-	-	-	-
39	50	-	-	4	-	2	-	-	-	-	49	-	-	0 (D –	-	-	-	-	-	-	-
33	-	-	38	37	-	-	4	1	-	-	-	-	-	- (0 C	-	-	-	-	-	-	-
45	-	-	-	0	22	-	-	20	42	-	-	-	-		- 0	0	-	-	-	-	-	-
51	-	-	48	35	-	-	-	44	-	18	-	-	-			0	0	-	-	-	-	-
47	11	-	-	-	17	-	-	51	-	-	-	0	-			-	0	0	-	-	-	-
5	-	25	-	6	-	45	-	13	40	-	-	-	-			-	-	0	0	-	-	-
33	-	-	34	24	-	-	-	23	-	-	46	-	-			-	-	-	0	0	-	-
1	-	27	-	1	-	-	-	38	-	44	-	-	-			-	-	-	-	0	0	-
-	18	-	-	23	-	-	8	0	35	-	-	-	-			-	-	-	-	-	0	0
49	-	17	-	30	-	-	-	34	-	-	19	1	-			-	-	-	-	-	-	0
(b)	Cod	ing r	ate I	R = 2	/3.																	
39	31	22	43	-	40	4	-	11	-	-	50	-	-	-	6	1	. 0	-		-		
25	52	41	2	6	-	14	-	34	-	-	-	24	-	37	-	-	0	0		-		
43	31	29	0	21	-	28	-	-	2	-	-	7	-	17	-	-	-	0	0 -	-		
20	33	48	-	4	13	-	26	-	-	22	-	-	46	42	-	-	-	-	0 0	-		
45	7	18	51	12	25	-	-	-	50	-	-	5	-	-	-	C) –	-	- 0	0		
35	40	32	16	5	-	-	18	-	-	43	51	-	32	-	-	-	-	-		0	0 -	
9	24	13	22	28	-	-	37	-	-	25	-	-	52	-	13	-	-	-		-	0 0)
32	22	4	21	16	-	-	-	27	28	-	38	-	-	-	8	1		-		-	- C	1
(c)	Cod	ing r	ate F	R = 3	/4.																	
39	40	51	41	3	29	8	36	-	14	-	6	-	33	-	11	-	4	ł	1 0	-	-	
48	21	47	9	48	35	51	-	38	-	28	-	34	-	50	-	50	-	-	- 0	0	-	
30	39	28	42	50	39	5	17	-	6	-	18	-	20	-	15	-	40)		0	0	
29	0	1	43	36	30	47	-	49	-	47	-	3	-	35	-	34	-		0 -	-	0	о – С
1	32	11	23	10	44	12	7	-	48	-	4	-	9	-	17	-	16	5		-	- (0 C
13	7	15	47	23	16	47	-	43	-	29	-	52	-	2	-	53	-		1 -	-	-	- 0
(d)	Cod	ing r	ate I	R = 5	6.																	
48	29	37	52	2	16	6	14	53	31 3	34	51	8 4	25	33	1 49	5 -		46	52	1	0	
17	4	30	7	43	11	24	6	14	21	63	91	74	0 4	7	7 19	5 41	1	19	-	-	0	0 – C
7	2	51	31	46	23	16	11	53	40 3	LO	74	6 5	3 3	3 3	5 -	- 25	5	35	38	0	-	0 0
19	48	41	1	10	7	36	47	5	29 !	52 5	2 3	1 1	0 2	6	6 3	3 2	2	-	51	1	-	- 0

Table F-2—Matrix prototypes for codeword block length *n*=1296 bits,subblock size is Z= 54 bits

(a)	Codi	ing r	ate R	R = 1	/2.																		
57	-	-	-	50	-	11	-	50	-	79	-	1	0	-	-	-	-	-	-	-	-	-	-
3	-	28	-	0	-	-	-	55	7	-	-	-	0	0	-	-	-	-	-	-	-	-	-
30	-	-	-	24	37	-	-	56	14	-	-	-	-	0	0	-	-	-	-	-	-	-	-
62	53	-	-	53	-	-	3	35	-	-	-	-	-	-	0	0	-	-	-	-	-	-	-
40	-	-	20	66	-	-	22	28	-	-	-	-	-	-	-	0	0	-	-	-	-	-	-
0	-	-	-	8	-	42	-	50	-	-	8	-	-	-	-	-	0	0	-	-	-	-	-
69	79	79	-	-	-	56	-	52	-	-	-	0	-	-	-	-	-	0	0	-	-	-	-
65	-	-	-	38	57	-	-	72	-	27	-	-	-	-	-	-	-	-	0	0	-	-	-
64	-	-	-	14	52	-	-	30	-	-	32	-	-	-	-	-	-	-	-	0	0	-	-
-	45	-	70	0	-	-	-	77	9	-	-	-	-	-	-	-	-	-	-	-	0	0	-
2	56	-	57	35	-	-	-	-	-	12	-	-	-	-	-	-	-	-	-	-	-	0	0
24	-	61	-	60	-	-	27	51	-	-	16	1	-	-	-	-	-	-	-	-	-	-	0
(b)	Cod	ing r	ate F	R = 2	/3.																		
61	75	4	63	56	-	-	-	-	-	-	8	-	. :	2	17	25		1 0	-		-		_ !
56	74	77	20	-	-	-	64	24	4	67	-	7	,	-	-	-		- 0	0		-		-
28	21	68	10	7	14	65	-	-	-	23	-	-		-	75	-			0	0 -	-		-
48	38	43	78	76	-	-	-	-	5	36	-	15	5 7	2	-	-			-	0 0	-		_ !
40	2	53	25	-	52	62	-	20	-	-	44	-		_	-	-		0 -	-	- 0	0		_ !
69	23	64	10	22	-	21	-	-	-	-	-	68	2	3	29	-			-		0	0 -	-
12	0	68	20	55	61	-	40	-	-	-	52	-		-	-	44			-		-	0 (J
58	8	34	64	78	-	-	11	78	24	-	-	-		-	-	58		1 -	-		-	- ()
(c)	Codi	ing r	ate R	R = 3	/4.																		
48	29	28	39	9	61	-	-	-	63	45	80	-	-	-	3	7 3	32	22		1 0	-		-
4	49	42	48	11	30	-	-	-	49	17	41	37	15	-	5	4	-	-		- 0	0		-
35	76	78	51	37	35	21	-	17	64	-	-	-	59	7	,	-	-	32			0	0 -	-
9	65	44	9	54	56	73	34	42	-	-	-	35	-	-		- 4	16	39		0 -	-	0 0	-
3	62	7	80	68	26	-	80	55	-	36	-	26	-	9)	- 7	72	-			-	- 0	0
26	75	33	21	69	59	3	38	-	-	-	35	-	62	3	6 3	26	-	-	-	1		-	- 0
(d)	Cod	ing r	ate F	R = 5	/6.																		
13	48	80	66	4	74	7	30	76	52	37 6	50	- 4	9 '	73	31	74	7	3	23	-	1	. 0	
69	63	74	56	64	77	57	65	6	16	51	- 6	54	- (58	9	48	6	2	54	27	-	0	0 -
51	15	0	80	24	25	42	54	44	71	71	9 (57 3	35	-	58	-	2	9	-	53	0	-	0 0
16	29	36	41	44	56	59	37	50	24	- (55	4 6	55	52	-	4		-	73	52	1	. –	- 0

Table F-3—Matrix prototypes for codeword block length n=1944 bits, subblock size is Z = 81 bits

The parity-check matrix interpreted as the incidence matrix of a graph

Example: Hamming (7,4,3) code

San José State

Iterative decoding of LDPC codes using Tanner graph

• <u>Hard-decision</u>

Preliminary ("hard") decisions: *bit-flip*

• <u>Soft-decision</u>

Channel outputs (matched filter): *belief propagation*

More constellations: Illustration using binary (273,191,17) EG code

IEEE 802.11n-2009: Code rates

Modulation	Coding rate	Relative constellation error (dB)
BPSK	1/2	-5
QPSK	1/2	-10
QPSK	3/4	-13
16-QAM	1/2	-16
16-QAM	3/4	-19
64-QAM	2/3	-22
64-QAM	3/4	-25
64-QAM	5/6	-28

Table 20-21—Allowed relative constellation error versus constellation size and coding rate

IEEE 802.11n: Space-Time Block Coding

N _{STS}	HT-SIG MCS field (bits 0–6 in HT-SIG ₁)	N _{SS}	HT-SIG STBC field (bits 4–5 in HT-SIG ₂)	i _{STS}	$\tilde{d}_{k,i,2m}$	$\tilde{d}_{k,\ i,\ 2m+1}$
2	0.7	1	1	1	$d_{k, 1, 2m}$	$d_{k, 1, 2m+1}$
2	0-7	1	I	2	$-d_{k,1,2m+1}^{*}$	$d_{k, 1, 2m}^*$
				1	$d_{k, 1, 2m}$	$d_{k, 1, 2m+1}$
3	8–15, 33–38	2	1	2	$-d_{k,1,2m+1}^{*}$	$d_{k, 1, 2m}^{*}$
				3	$d_{k, 2, 2m}$	$d_{k, 2, 2m+1}$
				1	$d_{k, 1, 2m}$	$d_{k, 1, 2m+1}$
	0.15	2	2	2	$-d_{k,1,2m+1}^{*}$	$d_{k, 1, 2m}^{*}$
4	8–15	2	2	3	$d_{k,2,2m}$	$d_{k, 2, 2m+1}$
				4	$-d_{k,2,2m+1}^{*}$	$d_{k, 2, 2m}^{*}$
				1	$d_{k, 1, 2m}$	$d_{k, 1, 2m+1}$
4	16–23, 39, 41,	2	1	2	$-d_{k,1,2m+1}^{*}$	$d_{k, 1, 2m}^*$
4	43, 46, 48, 50	3	I	3	$d_{k, 2, 2m}$	$d_{k, 2, 2m+1}$
				4	$d_{k, 3, 2m}$	$d_{k, 3, 2m+1}$

Table 20-17—Constellation mapper output to spatial mapper input for STBC

802.11ad-2012: OFDM

Data rate MCS index Modulation Code rate NBPSC N_{CBPS} NDBPS (Mbps) 13 SOPSK 1/21 336 168 693.00 14 SQPSK 5/8 1 336 210 866.25 15 OPSK 1/2672 336 1386.00 2 16 QPSK 5/8 2 672 420 1732.50 17 OPSK 3/4 672 504 2079.00 2 18 16-OAM 1/24 1344 672 2772.00 1344 19 16-QAM 5/8 840 3465.00 4 20 16-QAM 3/4 4 1344 1008 4158.00 21 13/16 1344 1092 4504.50 16-QAM 4 22 64-QAM 5/8 6 2016 1260 5197.50 3/4 2016 23 64-OAM 6 1512 6237.00 64-QAM 24 13/16 6 2016 1638 6756.75

Table 21-14—Modulation and coding scheme for OFDM

802.11ad-2012: LDPC codes (1)

• Rate 1/2: N = 16x42 = 672N-K = 8x42 = 336 K = 336

21.3.8.2 Rate-1/2 LDPC code matrix H = 336 rows x 672 columns, Z = 42

Table 21-6—Rate 1/2 LDPC code matrix (Each nonblank element *i* in the table is the cyclic permutation matrix P_i of size $Z \times Z$; blank entries represent the zero matrix of size $Z \times Z$)

40		38		13		5		18							
34		35		27			30	2	1						
	36		31		7		34		10	41					
	27		18		12	20				15	6				
35		41		40		39		28			3	28			
29		0			22		4		28		27		23		
	31		23		21		20			12			0	13	
	22		34	31		14		4				13		22	24

802.11ad-2012: LDPC codes (2)

• Rate 5/8: N = 16x42 = 672 N-K = 6x42 = 252 K = 420

21.3.8.3 Rate-5/8 LDPC code matrix H = 252 rows x 672 columns, Z = 42

Table 21-7—Rate 5/8 LDPC code matrix (Each nonblank element *i* in the table is the cyclic permutation matrix P_i of size $Z \times Z$; blank entries represent the zero matrix of size $Z \times Z$)

20	36	34	31	20	7	41	34		10	41					
30	27		18		12	20	14	2	25	15	6				
35		41		40		39		28			3	28			
29		0			22		4		28		27	24	23		
	31		23		21		20		9	12			0	13	
	22		34	31		14		4						22	24

802.11ad-2012: LDPC codes (3)

• Rate 3/4: N = 16x42 = 672 N-K = 4x42 = 168 K = 504

21.3.8.4 Rate-3/4 LDPC code matrix H = 168 rows x 672 columns, Z = 42

Table 21-8—Rate 3/4 LPDC code matrix (Each nonblank element *i* in the table is the cyclic permutation matrix P_i of size $Z \times Z$; blank entries represent the zero matrix of size $Z \times Z$)

35	19	41	22	40	41	39	6	28	18	17	3	28			
29	30	0	8	33	22	17	4	27	28	20	27	24	23		
37	31	18	23	11	21	6	20	32	9	12	29		0	13	
25	22	4	34	31	3	14	15	4		14	18	13	13	22	24

802.11ad-2012: LDPC codes (4)

• Rate 13/16: N = 16x42 = 672N-K = 3x42 = 126 K = 546

21.3.8.5 Rate-13/16 LDPC code matrix H = 126 rows x 672 columns, Z = 42

Table 21-9—Rate 13/16 LDPC code matrix (Each nonblank element *i* in the table is the cyclic permutation matrix P_i of size $Z \times Z$; blank entries represent the zero matrix of size $Z \times Z$)

29	30	0	8	33	22	17	4	27	28	20	27	24	23		
37	31	18	23	11	21	6	20	32	9	12	29	10	0	13	
25	22	4	34	31	3	14	15	4	2	14	18	13	13	22	24

802.11ad-2012: Single-Carrier (1)

MCS index	Modulation	N _{CBPS}	Repetition	Code rate	Data rate (Mbps)
1	π/2-BPSK	1	2	1/2	385
2	π/2-BPSK	1	1	1/2	770
3	π/2-BPSK	1	1	5/8	962.5
4	π/2-BPSK	1	1	3/4	1155
5	π/2-BPSK	1	1	13/16	1251.25
6	π/2-QPSK	2	1	1/2	1540
7	π/2-QPSK	2	1	5/8	1925
8	π/2-QPSK	2	1	3/4	2310
9	π/2-QPSK	2	1	13/16	2502.5
10	π/2-16QAM	4	1	1/2	3080
11	π/2-16QAM	4	1	5/8	3850
12	π/2-16QAM	4	1	3/4	4620

Table 21-18—Modulation and coding scheme for SC

802.11ad-2012: Single-Carrier (2)

Code rate	Codeword size	Number of data bits
1/2	672	336
5/8	672	420
3/4	672	504
13/16	672	546

Table 21-19—LDPC code rates

Table 21-22—Low-power SC modulation and coding schemes

MCS	Modulation	Effective code rate	Coding scheme	N _{CPB}	Rate (Mbps)
25	$\pi/2$ -BPSK	13/28	RS(224,208)+Block-Code(16,8)	392	626
26	$\pi/2$ -BPSK	13/21	RS(224,208)+Block-Code(12,8)	392	834
27	$\pi/2$ -BPSK	52/63	RS(224,208)+SPC(9,8)	392	1112
28	π/2-QPSK	13/28	RS(224,208)+Block-Code(16,8)	392	1251
29	π/2-QPSK	13/21	RS(224,208)+Block-Code(12,8)	392	1668
30	π/2-QPSK	52/63	RS(224,208)+SPC(9,8)	392	2224
31	π/2-QPSK	13/14	RS(224,208)+Block-Code(8,8)	392	2503

IEEE 802.15.3c-2009: Code Rates

MCS class	MCS identifier	Data rate (Mb/s) with pilot word length = 0	Data rate (Mb/s) with pilot word length = 64	Modulation	Spreadi factor L _{SF}	ng	FEC type	
Class1	0	25.8 (CMS)			64	Τ		
	1	412	361		4	4		
	2	825	722	$\pi/2$ BPSK/(G)MSK ^{**}	2		KS(255,239)	
	3	1650 (MPR)	1440		1			
	4	1320	1160	π/2 BPSK/(G)MSK	1		LDPC(672,504)	
	5	440	385		2			
	6	880	770	$\pi/2$ BPSK/(G)MSK	1		LDPC(6/2,336)	
Class2	7	1760	1540	$\pi/2$ QPSK	1		LDPC(672,336)	
	8	2640	2310	$\pi/2$ QPSK	1		LDPC(672,504)	
	9	3080	2700	$\pi/2$ QPSK	1		LDPC(672,588)	
	10	3290	2870	$\pi/2$ QPSK	1		LDPC(1440,1344)	
	11	3300	2890	$\pi/2$ QPSK	1		RS(255,239)	
Class3	12	3960	3470	π/2 8-PSK	1		LDPC(672,504)	
	13	5280	4620	π/2 16-QAM	1		LDPC(672,504)	

Table 103—MCS dependent parameters

IEEE 802.15.3c-2009: Unequal Error Protection !!

12.4 Audio/Visual mode of mmWave PHY

The Audio/Visual (AV) PHY is implemented with two PHY modes, the high-rate PHY (HRP) and low-rate PHY (LRP), both of which use orthogonal frequency domain multiplexing (OFDM). The data rates supported by the HRP are defined in Table 134.

San José State

Table 134—HRP data rates and coding

IEEE 802.15.7-2011: OOK and PPM (1)

Modulation	RLL code	Optical clock rate	FI		
			Outer code (RS)	Inner code (CC)	Data rate
	Manchester	200 kHz	(15,7)	1/4	11.67 kb/s
			(15,11)	1/3	24.44 kb/s
OOK			(15,11)	2/3	48.89 kb/s
			(15,11)	none	73.3 kb/s
			none	none	100 kb/s
VPPM	4B6B	400 kHz	(15,2)	none	35.56 kb/s
			(15,4)	none	71.11 kb/s
			(15,7)	none	124.4 kb/s
			none	none	266.6 kb/s

IEEE 802.15.7-2011: OOK and PPM (2)

Modulation	RLL code	Optical clock rate	FEC	Data rate
	3.75 MHz RS(64,32) 4B6B RS(160,128) 7.5 MHz RS(64,32) RS(160,128) RS(64,32) none none	2 75 MIL-	RS(64,32)	1.25 Mb/s
		5.75 MHZ	RS(160,128)	2 Mb/s
VPPM		2.5 Mb/s		
		7.5 MHz	RS(160,128)	4 Mb/s
			none	5 Mb/s
		15 MHz	RS(64,32)	6 Mb/s
			RS(160,128)	9.6 Mb/s
		20 MIL	RS(64,32)	4,32) 1.25 Mb/s 0,128) 2 Mb/s 4,32) 2.5 Mb/s 0,128) 4 Mb/s ne 5 Mb/s 4,32) 6 Mb/s 0,128) 9.6 Mb/s 4,32) 12 Mb/s 0,128) 19.2 Mb/s 0,128) 19.2 Mb/s 0,128) 38.4 Mb/s 0,128) 76.8 Mb/s 0,128) 76.8 Mb/s
	8B10B 60 MHz RS(160, RS(64, RS(160, RS(160, RS(160, RS(160, RS(160,	30 MHZ	RS(160,128)	
ООК			RS(64,32)	24 Mb/s
		RS(160,128)	38.4 Mb/s	
			RS(64,32)	48 Mb/s
		120 MHz	RS(160,128)	76.8 Mb/s
			none	96 Mb/s

Table 74—PHY II operating modes

IEEE 802.15.7-2011: CSK (Color-Shift Keying)

Optical clock rate	FEC	Data rate
12 MIL	RS(64,32)	12 Mb/s
	RS(64,32)	18 Mb/s
	RS(64,32)	24 Mb/s
	RS(64,32)	36 Mb/s
24 MHz	RS(64,32)	48 Mb/s
-	none	72 Mb/s
	none	96 Mb/s
	Optical clock rate 12 MHz 24 MHz	Optical clock rateFEC12 MHzRS(64,32)RS(64,32)RS(64,32)RS(64,32)RS(64,32)24 MHzRS(64,32)nonenone

Table 75—PHY III operating modes

IEEE 802.15.7-2011: Colors

Table 106—xy color coordinates

Band (nm)	Code	Center (nm)	(x, y)
380–478	000	429	(0.169, 0.007)
478–540	001	509	(0.011, 0.733)
540–588	010	564	(0.402, 0.597)
588–633	011	611	(0.669, 0.331)
633–679	100	656	(0.729, 0.271)
679–726	101	703	(0.734, 0.265)
726–780	110	753	(0.734, 0.265)

Figure 137—Center of color bands on xy color coordinates

IEEE 802.16-2009: Alamouti (STBC)

Figure 259—Illustration of STC

IEEE 802.20-2008: Modulations

				- and to the mean and county three					
Bits/Sym	Signal Set	Puncture	Shaper	Block Code					
0.5	$\pi/2$ BPSK	Repeat	—	—					
0.67	π/2 BPSK	1 of 4	_						
1	QPSK		_						
1.5	QPSK	2 of 6	_						
2	8-PSK		_	(64,57)					
2.5	8-PSK		_	(64,57)					
3	12-QAM	2 of 6	3/4	(48,47)					
3.5	16-QAM	2 of 6	4/4	(64,63)					
4	24-QAM	2 of 6	5/4	(80,79)					
<u>4.5</u>	<u>32-QAM</u>	<u>2 of 6</u>	<u>5/5</u>	<u>(80,79)</u>					
<u>5.5</u>	<u>64-QAM</u>	<u>2 of 5</u>	<u>6/6</u>	<u>(80,79)</u>					
		RESERVED	1						
	$ \begin{array}{c c} 0.5 \\ 0.67 \\ 1 \\ 1.5 \\ 2 \\ 2.5 \\ 3 \\ 3.5 \\ 4 \\ \underline{4.5} \\ 5.5 \\ \end{array} $	0.5 π/2 BPSK 0.67 π/2 BPSK 1 QPSK 1.5 QPSK 2 8-PSK 2.5 8-PSK 3 12-QAM 3.5 16-QAM 4 24-QAM <u>4.5</u> <u>32-QAM</u> <u>5.5</u> <u>64-QAM</u>	0.5 $\pi/2$ BPSKRepeat 0.67 $\pi/2$ BPSK1 of 41QPSK—1.5QPSK2 of 628-PSK—2.58-PSK—312-QAM2 of 63.516-QAM2 of 6424-QAM2 of 64.532-QAM2 of 65.564-QAM2 of 5RESERVED	0.5 $\pi/2$ BPSK Repeat — 0.67 $\pi/2$ BPSK 1 of 4 — 1 QPSK — — 1.5 QPSK 2 of 6 — 2 8-PSK — — 2.5 8-PSK — — 3 12-QAM 2 of 6 3/4 3.5 16-QAM 2 of 6 4/4 4 24-QAM 2 of 6 5/4 4.5 32-QAM 2 of 6 5/5 5.5 64-QAM 2 of 5 6/6 RESERVED					

Table 434—Modulation and coding rates

References

- [1] IEEE 802 Part 3: Carrier sense multiple access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications, IEEE Computer Society, 2008.
- [2] IEEE 802 Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE Computer Society, 2007.
- [3] IEEE 802 Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications— Amendment 5: Enhancements for Higher Throughput, IEEE Computer Society, 2009.
- [4] IEEE 802 Part 15.3: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for High Rate Wireless Personal Area Networks (WPANs) – Amendment 2: Millimeter-wave-based Alternative Physical Layer Extension, 2009
- [5] IEEE 802 Part 15.7: Short-Range Wireless Optical Communication Using Visible Light, IEEE Computer Society, 2011.
- [6] IEEE 802 Part 16: Air Interface for Broadband Wireless Access Systems, IEEE Computer Society, 2009.
- [7] IEEE 802 Part 20: Air Interface for Mobile Broadband Wireless Access Systems Supporting Vehicular Mobility — Physical and Media Access Control Layer Specification, IEEE Computer Society, 2008.
- [8] IEEE 802 Part 22: Cognitive Wireless RAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Policies and Procedures for Operation in the TV Bands, IEEE Computer Society, 2011.

GRACIAS!

Contact Information

robert.morelos-zaragoza@sjsu.edu

