

Total

Universidad Nacional Autónoma de México Facultad de Ingeniería

PROGRAMA DE ESTUDIO

Fl	UNDAM	ENTOS DE SISTEMAS EM	BEBIDOS	1858	9	8	
Asignatura				Clave	Semestre	Crédito	
INGENIERÍA ELÉCTRICA EN C		INGENI EN COMP	GENIERÍA COMPUTACIÓN	INGENIERÍA EN COMPUTACIÓN			
División Dep			Departai	nento	Licenci	Licenciatura	
Asignatura:			Horas/semai	ıa:	Horas/seme	Horas/semestre:	
C	Obligato	ria X	Teóricas 3	5.0	Teóricas	48.0	
C	Optativa		Prácticas 2	2.0	Prácticas	32.0	
			Total 5	5.0	Total	80.0	
Modalida	ad: Cui	rso teórico-práctico					
a,							
Seriación	ı obliga	toria antecedente: Micro	ocomputadoras				
Seriación	ı ahliga	toria consecuente: Ning	กเทล				
Scriucion	· ozngu	toria consecuence. Time	,uiiu				
completa software	de un s	ará la utilidad de los sister sistema embebido, tanto e a operativo, programació	en hardware (arq	uitecturas, plata			
Temario	NÚM.	NOMBRE			HOR	PAS	
	1.	Introducción a los sistemas e	embebidos			3.0	
	2.	Organización, arquitectura y plataformas de sistemas embebidos				12.0	
	3.	Sistemas operativos para plataformas embebidas				11.0	
	4.	Software y programación de sistemas embebidos				12.0	
	5.	Desarrollo de un sistema embebido			10	10.0	
					48	3.0	
		Actividades prácticas			32	2.0	

80.0

1 Introducción a los sistemas embebidos

Objetivo: El alumno identificará la importancia del diseño de sistemas embebidos y sus aplicaciones mediante modelos y arquitecturas.

Contenido:

- 1.1 Concepto de sistema embebido.
- 1.2 Introducción a las arquitecturas de sistemas embebidos.
- 1.3 Importancia de la arquitectura de un sistema embebido.
- **1.4** El modelo de un sistema embebido, tipos y tamaños de sistemas embebidos.
- **1.5** Ejemplos de sistemas embebidos.

2 Organización, arquitectura y plataformas de sistemas embebidos

Objetivo: El alumno identificará las arquitecturas actuales de sistemas embebidos con plataformas comerciales.

Contenido:

- **2.1** Procesador.
- 2.2 Mapa de memoria del sistema.
- 2.3 Controlador de interrupciones.
- **2.4** Temporizadores.
- 2.5 Memoria volátil y no volátil. Direccionamientos.
- **2.6** Bus serie universal.
- 2.7 Interconexión de dispositivos.
- **2.8** Secuencia de arranque en plataformas embebidas.
- 2.9 Estudio de plataformas comerciales para sistemas embebidos (INTEL, ARM, etc.).

3 Sistemas operativos para plataformas embebidas

Objetivo: El alumno clasificará los sistemas operativos de las plataformas embebidas para su instalación y configuración.

Contenido:

- 3.1 Interfaz de aplicación.
- **3.2** Procesos, tareas e hilos.
- **3.3** Tipos de scheduling.
- **3.4** Administración de memoria.
- 3.5 Relojes y temporizadores.
- 3.6 Modelos de manejadores de dispositivos.
- **3.7** Sistema de almacenamiento de archivos.
- 3.8 Administración de energía.
- 3.9 Linux embebido (herramientas, anatomía, kernel, depuración, drivers, administración de memoria).
- 3.10 Windows embebido.
- 3.11 Android.

4 Software y programación de sistemas embebidos

Objetivo: El alumno diseñará programas para sistemas embebidos bajo plataformas del tipo IDE o lenguaje de bajo y alto nivel.

Contenido:

- 4.1 Programación en ensamblador.
- **4.2** Programación en alto nivel.
- 4.3 Ejemplos de manejadores de dispositivos (Device Drivers).
- 4.4 Software de aplicación y Middleware.

que se recomienda:

4.5 Programación de código en editores integrados IDE.

5 Desarrollo de un sistema embebido

Objetivo: El alumno aplicará los conocimientos adquiridos para desarrollar un sistema embebido básico.

Contenido:

5.1 Desarrollo de un sistema embebido con alguna plataforma comercial (INTEL Atom, ARM etc.).

Bibliografía básica	Temas para los
BARR, Michael, MASSA, Anthony	
Programming Embedded Systems: With C and GNU Development	Todos
Tools 2nd edition	
O Reilly	
BARRY, Peter, CROWLEY, Patrick	
Modern Embedded Computing: Designing Connected, Pervasive,	Todos
Media-Rich Systems Waltham	
Morgan Kaufman, 2012	
GREENGARD, Samuel	
The Internet of Things	2 y 4
Boston	
The MIT Press, 2015	
NOERGAARD, Tammy	
Embedded Systems Architecture: A Comprehensive Guide for	Todos
Engineers and Programmers Oxford	
Elsevier, 2012	

Bibliografía complementaria	Temas para los que se recomienda:
CANCCELE Lad.	
GANSSELE, Jack	m 1
The Art of Designing Embedded Systems	Todos
Boston	
NEWNES, 2008	
KOOPMAN, Philip	
Better Embedded System Software	1, 2 y 4
Boston	
Drumnadrochit Education, 2010	
MADISETTI, Vijay, BAHGA, Arshdeep	
Internet of Things (A Hands-on-Approach)	1,2 y 4
Boston	
VPT, A Hands-on-Approach, 2014	

MOLLOY, Derek

Exploring BeagleBone: Tools and Techniques for Building

Todos

with Embedded Linux Indianapolis JOHN WILEY AND SONS, 2014

VALVANO, Jonathan W.

Embedded Systems: Introduction to Arm Cortex-M

Todos

Microcontrollers 5th Edition

Boston

CreateSpace Independent Publishing Platform, 2012